Rosenzweig, J. & Bartl, M. A review and analysis of literature on autonomous driving. E-Journal Making-of Innovation 1–57 (2015).
Zhao, J. et al. Autonomous driving system: A comprehensive survey. Exp. Syst. Appl. 242, 122836 (2024).
Google Scholar
Barabas, I., Todoruţ, A., Cordoş, N. & Molea, A. Current challenges in autonomous driving. In IOP confer. Series: Mater. Sci. Eng. 252, 012096 (2017).
Google Scholar
Pham, L.H., Tran, D. N.-N. & Jeon, J.W. Low-light image enhancement for autonomous driving systems using driveretinex-net. In 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 1–5 (2020).
Lee, Y., Jeon, J., Ko, Y., Jeon, B. & Jeon, M. Task-driven deep image enhancement network for autonomous driving in bad weather. In 2021 IEEE International Conference on Robotics and Automation (ICRA), 13746–13753 (2021).
Li, G., Yang, Y., Qu, X., Cao, D. & Li, K. A deep learning based image enhancement approach for autonomous driving at night. Knowledge-Based Syst. 213, 106617 (2021).
Google Scholar
Mandal, G., Bhattacharya, D. & De, P. Real-time fast low-light vision enhancement for driver during driving at night. J. Amb. Intell. Human. Comput. 13, 789–798 (2022).
Google Scholar
Zhao, R., Han, Y. & Zhao, J. End-to-end retinex-based illumination attention low-light enhancement network for autonomous driving at night. Comput. Intell. Neurosci. 2022, 4942420 (2022).
Google Scholar
Zhong, S., Fu, L. & Zhang, F. Infrared image enhancement using convolutional neural networks for auto-driving. Appl. Sci. 13, 12581 (2023).
Google Scholar
Wang, J. et al. N-loligan: Unsupervised low-light enhancement gan with an n-net for low-light tunnel images. Digit. Signal Process. 143, 104259 (2023).
Google Scholar
Liu, Y., Wang, Y. & Li, Q. Lane detection based on real-time semantic segmentation for end-to-end autonomous driving under low-light conditions. Digit. Signal Process. 155, 104752 (2024).
Google Scholar
Munaf, S., Bharathi, A. & Jayanthi, A. Fpga-based low-light image enhancement using retinex algorithm and coarse-grained reconfigurable architecture. Sci. Reports 14, 28770 (2024).
Google Scholar
Mahdizadeh, M., Chen, S. & Ye, P. Illuminating the night: A light source-aware and exposure-balanced low-light enhancement approach for real nighttime scenes. Digital Signal Processing 104999 (2025).
Ruan, G. et al. Fine-grained vehicle recognition under low light conditions using efficientnet and image enhancement on lidar point cloud data. Sci. Reports 15, 4691 (2025).
Google Scholar
Mo, T., Zheng, S., Chan, W.-Y. & Yang, R. Review of ai image enhancement techniques for in-vehicle vision systems under adverse weather conditions. World Electric Vehicle J. 16, 72 (2025).
Google Scholar
Zadeh, L.A. Fuzzy sets. Information and Control (1965).
Bloch, I. Fuzzy sets for image processing and understanding. Fuzzy Sets syst. 281, 280–291 (2015).
Google Scholar
Haußecker, H. & Tizhoosh, H. R. Fuzzy image processing. In Computer vision and applications 541–576 (Elsevier, 2000).
Google Scholar
Vlachos, I. K. & Sergiadis, G. D. Parametric indices of fuzziness for automated image enhancement. Fuzzy Sets Syst. 157, 1126–1138 (2006).
Google Scholar
Hanmandlu, M. & Jha, D. An optimal fuzzy system for color image enhancement. IEEE Trans. Image Process. 15, 2956–2966 (2006).
Google Scholar
Saenko, A., Polte, G. & Musalimov, V. Image enhancement and image quality analysis using fuzzy logic techniques. In 2012 9th International Conference on Communications (COMM), 95–98 (IEEE, 2012).
Zhang, D., Qu, S., He, L. & Shi, S. Automatic ridgelet image enhancement algorithm for road crack image based on fuzzy entropy and fuzzy divergence. Opt. Lasers Eng. 47, 1216–1225 (2009).
Google Scholar
Chamorro-Martínez, J., Sánchez, D., Soto-Hidalgo, J. M. & Martínez-Jiménez, P. M. A discussion on fuzzy cardinality and quantification. some applications in image processing. Fuzzy Sets and Systems 257, 85–101 (2014).
Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Syst. 20, 87–96 (1986).
Google Scholar
Vlachos, I.K. & Sergiadis, G.D. Intuitionistic fuzzy image processing. Soft Computing in Image Processing: Recent Advances 383–414 (2007).
Melo-Pinto, P. et al. Image segmentation using atanassov’s intuitionistic fuzzy sets. Exp. Syst. Appl. 40, 15–26 (2013).
Google Scholar
Balasubramaniam, P. & Ananthi, V. Image fusion using intuitionistic fuzzy sets. Inform. Fusion 20, 21–30 (2014).
Google Scholar
Deng, H., Sun, X., Liu, M., Ye, C. & Zhou, X. Image enhancement based on intuitionistic fuzzy sets theory. IET Image Process. 10, 701–709 (2016).
Google Scholar
Chaira, T. Intuitionistic fuzzy approach for enhancement of low contrast mammogram images. Int. J. Imag. Syst. Technol. 30, 1162–1172 (2020).
Google Scholar
Chaira, T. An intuitionistic fuzzy clustering approach for detection of abnormal regions in mammogram images. J. Digit. Imag. 34, 428–439 (2021).
Google Scholar
Jebadass, J. R. & Balasubramaniam, P. Color image enhancement technique based on interval-valued intuitionistic fuzzy set. Inform. Sci. 653, 119811 (2024).
Google Scholar
Jebadass, J. R. & Balasubramaniam, P. Low contrast enhancement technique for color images using interval-valued intuitionistic fuzzy sets with contrast limited adaptive histogram equalization. Soft Comput. 26, 4949–4960 (2022).
Google Scholar
Jebadass, J. R. & Balasubramaniam, P. Low light enhancement algorithm for color images using intuitionistic fuzzy sets with histogram equalization. Multimed. Tools Appl. 81, 8093–8106 (2022).
Google Scholar
Jebadass, J. R. & Balasubramaniam, P. Interval type-2 fuzzy set based block-sbu for image fusion technique. Appl. Soft Comput. 143, 110434 (2023).
Google Scholar
Yager, R. R. On the measure of fuzziness and negation. ii. lattices. Inform. Control 44, 236–260 (1980).
Google Scholar
Selvam, C., Jebadass, R. J. J., Sundaram, D. & Shanmugam, L. A novel intuitionistic fuzzy generator for low-contrast color image enhancement technique. Inform. Fusion 108, 102365 (2024).
Google Scholar
Chinnappan, R.R. & Sundaram, D. A low-light video enhancement approach using novel intuitionistic fuzzy generator. The European Physical Journal Special Topics 1–13 (2024).
Ragavendirane, M. & Dhanasekar, S. Low-light image enhancement via new intuitionistic fuzzy generator-based retinex approach. IEEE Access (2025).
Khan, M. R., Ullah, K., Karamti, H., Khan, Q. & Mahmood, T. Multi-attribute group decision-making based on q-rung orthopair fuzzy aczel-alsina power aggregation operators. Eng. Appl. Artific. Intell. 126, 106629 (2023).
Google Scholar
Khan, M. R. et al. Some aczel-alsina power aggregation operators based on complex q-rung orthopair fuzzy set and their application in multi-attribute group decision-making. IEEE Access 11, 115110–115125 (2023).
Google Scholar
Khan, M. R., Ullah, K., Khan, Q. & Pamucar, D. Intuitionistic fuzzy dombi aggregation information involving lower and upper approximations. Comput. Appl. Math. 44, 1–45 (2025).
Google Scholar
Khan, M. R. et al. Evaluating safety in dublin’s bike-sharing system using the concept of intuitionistic fuzzy rough power aggregation operators. Measurement 253, 117553 (2025).
Google Scholar
Sheela Rani, M. & Dhanasekar, S. Application of type-2 heptagonal fuzzy sets with multiple operators in multi-criteria decision-making for identifying risk factors of zika virus. BMC Infect. Diseas. 25, 450 (2025).
Google Scholar
Sheela, R. M. & Dhanasekar, S. Analyzing risk factors of tuberculosis using type-2 interval-valued trapezoidal fuzzy numbers with einstein aggregation operators extended to mcdm. Heliyon 10, e35997 (2024).
Google Scholar
Chaira, T. An improved medical image enhancement scheme using type ii fuzzy set. Appl. Soft Comput. 25, 293–308 (2014).
Google Scholar
Chandra, N. & Bhardwaj, A. Medical image enhancement using modified type ii fuzzy membership function generated by hamacher t-conorm. Soft Computing 1–22 (2024).
Wadhwa, A. & Bhardwaj, A. Enhancement of mri images using modified type-2 fuzzy set. Multimedia Tools and Applications 1–16 (2024).
Krutsch, R. & Tenorio, D. Histogram equalization. Freescale Semiconductor, Document Number AN4318, Application Note 30 (2011).
Choi, D.H., Jang, I.H., Kim, M.H. & Kim, N.C. Color image enhancement using single-scale retinex based on an improved image formation model. In 2008 16th European Signal Processing Conference, 1–5 (IEEE, 2008).
Petro, A.B., Sbert, C. & Morel, J.-M. Multiscale retinex. Image processing on line 71–88 (2014).
Khorana, A. et al. Choosing the appropriate measure of central tendency: Mean, median, or mode?. Knee Surgery, Sports Traumatol., Arthroscopy 31, 12–15 (2023).
Google Scholar
Klement, E. P., Mesiar, R. & Pap, E. Triangular norms: Basic notions and properties. In Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms 17–60 (Elsevier, 2005).
Google Scholar
Yager, R. R. On a general class of fuzzy connectives. Fuzzy Sets Syst. 4, 235–242 (1980).
Google Scholar
Dombi, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8, 149–163 (1982).
Google Scholar
Weber, S. Two integrals and some modified versions–critical remarks. Fuzzy Sets and Syst. 20, 97–105 (1986).
Google Scholar
Oussalah, M. On the use of hamacher’s t-norms family for information aggregation. Inform. Sci. 153, 107–154 (2003).
Google Scholar
Wang, W. & Liu, X. Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans. Fuzzy Syst. 20, 923–938 (2012).
Google Scholar
Yu, F. et al. Bdd100k: A diverse driving dataset for heterogeneous multitask learning (2020). https://arxiv.org/abs/1805.04687. 1805.04687.
Karthik, A. & Ghosh, M. Modeling of covid-19 with vaccination and optimal control. The European Physical Journal Special Topics 1–12 (2024).