Phylogenetic taxonomy of the Zambian Anopheles coustani group using a mitogenomics approach | Malaria Journal

  • Pryce J, Medley N, Choi L. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database Syst Rev. 2022;2022:CD012688.

    PubMed Central 

    Google Scholar 

  • Sherrard-Smith E, Ngufor C, Sanou A, Guelbeogo MW, N’Guessan R, Elobolobo E, et al. Inferring the epidemiological benefit of indoor vector control interventions against malaria from mosquito data. Nat Commun. 2022;13:3862.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit Vectors. 2020;13:295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musiime AK, Smith DL, Kilama M, Rek J, Arinaitwe E, Nankabirwa JI, et al. Impact of vector control interventions on malaria transmission intensity, outdoor vector biting rates and Anopheles mosquito species composition in Tororo, Uganda. Malar J. 2019;18:445.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci USA. 2019;116:15086–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kreppel KS, Viana M, Main BJ, Johnson PCD, Govella NJ, Lee Y, et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci Rep. 2020;10:14527.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanou A, Nelli L, Guelbéogo WM, Cissé F, Tapsoba M, Ouédraogo P, et al. Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Sci Rep. 2021;11:17569.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J. 2011;10:184.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perugini E, Guelbeogo WM, Calzetta M, Manzi S, Virgillito C, Caputo B, et al. Behavioural plasticity of Anopheles coluzzii and Anopheles arabiensis undermines LLIN community protective effect in a Sudanese-savannah village in Burkina Faso. Parasit Vectors. 2020;13:277.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fornadel CM, Norris LC, Franco V, Norris DE. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha. Zambia Vector Borne Zoonotic Dis. 2011;11:1173–9.

    Article 
    PubMed 

    Google Scholar 

  • Coetzee M. Literature review of the systematics, biology and role in malaria transmission of species in the Afrotropical. Zootaxa. 2022;5133:182–200.

    Article 
    PubMed 

    Google Scholar 

  • Tabue RN, Nem T, Atangana J, Bigoga JD, Patchoke S, Tchouine F, et al. Anopheles ziemanni a locally important malaria vector in Ndop health district, north west region of Cameroon. Parasit Vectors. 2014;7:262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montoya LF, Martí-Soler H, Máquina M, Comiche K, Cuamba I, Alafo C, et al. The mosquito vectors that sustained malaria transmission during the Magude project despite the combined deployment of indoor residual spraying, insecticide-treated nets and mass-drug administration. PLoS ONE. 2022;17: e0271427.

    Article 

    Google Scholar 

  • Saili K, de Jager C, Sangoro OP, Nkya TE, Masaninga F, Mwenya M, et al. Anopheles rufipes implicated in malaria transmission both indoors and outdoors alongside Anopheles funestus and Anopheles arabiensis in rural south-east Zambia. Malar J. 2023;22:95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goupeyou-Youmsi J, Rakotondranaivo T, Puchot N, Peterson I, Girod R, Vigan-Womas I, et al. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighbouring villages of Madagascar. Parasit Vectors. 2020;13:430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nepomichene TNJJ, Tata E, Boyer S. Malaria case in Madagascar, probable implication of a new vector Anopheles coustani. Malar J. 2015;14:475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antonio-Nkondjio C, Kerah CH, Simard F, Awono-ambene P, Chouaibou M, Tchuinkam T, et al. Complexity of the malaria vectorial system in Cameroon: contribution of secondary vectors to malaria transmission. J Med Entomol. 2006;43:1215–21.

    Article 
    PubMed 

    Google Scholar 

  • Máquina M, Opiyo MA, Cuamba N, Marrenjo D, Rodrigues M, Armando S, et al. Multiple Anopheles species complicate downstream analysis and decision-making in a malaria pre-elimination area in southern Mozambique. Malar J. 2024;23:23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finney M, McKenzie BA, Rabaovola B, Sutcliffe A, Dotson E, Zohdy S. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J. 2021;20:25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mustapha AM, Musembi S, Nyamache AK, Machani MG, Kosgei J, Wamuyu L, et al. Secondary malaria vectors in western Kenya include novel species with unexpectedly high densities and parasite infection rates. Parasit Vectors. 2021;14:252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lobo NF, Laurent BS, Sikaala CH, Hamainza B, Chanda J, Chinula D, et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci Rep. 2015;5:17952.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barrón MG, Paupy C, Rahola N, Akone-Ella O, Ngangue MF, Wilson-Bahun TA, et al. A new species in the major malaria vector complex sheds light on reticulated species evolution. Sci Rep. 2019;9:14753.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stevenson JC, Norris DE. Implicating cryptic and novel anophelines as malaria vectors in Africa. Insects. 2017;8:1.

    Article 

    Google Scholar 

  • Jones CM, Ciubotariu II, Muleba M, Lupiya J, Mbewe D, Simubali L, et al. Multiple novel clades of Anopheline mosquitoes caught outdoors in Northern Zambia. Front Trop Dis. 2021;2: 780664.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong D, Hemming-Schroeder E, Wang X, Kibret S, Zhou G, Atieli H, et al. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci Rep. 2020;10:16139.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MoraesZenker M, Portella TP, Pessoa FAC, Bengtsson-Palme J, Galetti PM. Low coverage of species constrains the use of DNA barcoding to assess mosquito biodiversity. Sci Rep. 2024;14:7432.

    Article 
    CAS 

    Google Scholar 

  • Oliveira TMP, Foster PG, Bergo ES, Nagaki SS, Sanabani SS, Marinotti O, et al. Mitochondrial genomes of Anopheles (Kerteszia) (Diptera: Culicidae) from the Atlantic Forest. Brazil J Med Entomol. 2016;53:790–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bohmann K, Mirarab S, Bafna V, Gilbert MTP. Beyond DNA barcoding: the unrealized potential of genome skim data in sample identification. Mol Ecol. 2020;29:2521–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coetzee M. Chromosomal and cross-mating evidence for two species within Anopheles (A.) coustani (Diptera: Culicidae). Syst Entomol. 1983;8:137–41.

    Article 

    Google Scholar 

  • Coetzee M. Anopheles crypticus, new species from South Africa is distinguished from Anopheles coustani. Mosq Syst. 1994;26:125–31.

    Google Scholar 

  • Ciubotariu II, Jones CM, Kobayashi T, Bobanga T, Muleba M, Pringle JC, et al. Genetic diversity of Anopheles coustani (Diptera: Culicidae) in malaria transmission foci in Southern and Central Africa. J Med Entomol. 2020;57:1782–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen D-H, He S-L, Fu W-B, Yan Z-T, Hu Y-J, Yuan H, et al. Mitogenome-based phylogeny of mosquitoes (Diptera: Culicidae). Insect Sci. 2024;31:599–612.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Da Silva AF, Machado LC, De Paula MB, Da Silva Pessoa Vieira CJ, De MoraisBronzoni RV, De Melo Santos MAV, et al. Culicidae evolutionary history focusing on the Culicinae subfamily based on mitochondrial phylogenomics. Sci Rep. 2020;10:18823.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo J, Yan Z-T, Fu W-B, Yuan H, Li X-D, Chen B. Complete mitogenomes of Anopheles peditaeniatus and Anopheles nitidus and phylogenetic relationships within the genus Anopheles inferred from mitogenomes. Parasit Vectors. 2021;14:452.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoban ML, Whitney J, Collins AG, Meyer C, Murphy KR, Reft AJ, et al. Skimming for barcodes: rapid production of mitochondrial genome and nuclear ribosomal repeat reference markers through shallow shotgun sequencing. PeerJ. 2022;10: e13790.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Silva FS, do Nascimento BLS, Cruz ACR, da Silva SP, de Aragão AO, Dias DD, et al. Sequencing and description of the complete mitochondrial genome of Limatus durhamii (Diptera: Culicidae). Acta Trop. 2023;239:106805.

    Article 
    PubMed 

    Google Scholar 

  • Kneubehl AR, Muñoz-Leal S, Filatov S, de Klerk DG, Pienaar R, Lohmeyer KH, et al. Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis. Sci Rep. 2022;12:19310.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong Z, Wang Y, Li C, Li L, Men X. Mitochondrial DNA as a molecular marker in insect ecology: current status and future prospects. Ann Entomol Soc Am. 2021;114:470–6.

    Article 
    CAS 

    Google Scholar 

  • Behura SK, Lobo NF, Haas B, deBruyn B, Lovin DD, Shumway MF, et al. Complete sequences of mitochondria genomes of Aedes aegypti and Culex quinquefasciatus and comparative analysis of mitochondrial DNA fragments inserted in the nuclear genomes. Insect Biochem Mol Biol. 2011;41:770–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryazansky SS, Chen C, Potters M, Naumenko AN, Lukyanchikova V, Masri RA, et al. The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes. BMC Biol. 2024;22:16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miles A, Harding NJ, Bottà G, Clarkson CS, Antão T, Kozak K, et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature. 2017;552:96–100.

    Article 

    Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The Genome Sequence of the Malaria Mosquito Anopheles gambiae. Science. 2002;298:129–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Consortium TA gambiae 1000 G, Clarkson CS, Miles A, Harding NJ, Lucas ER, Battey CJ, et al. Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii. Genome Res. 2020;30:1533–46.

  • Ghurye J, Koren S, Small ST, Redmond S, Howell P, Phillippy AM, et al. A chromosome-scale assembly of the major African malaria vector Anopheles funestus. GigaScience. 2019;8:giz063.

  • Jones CM, Lee Y, Kitchen A, Collier T, Pringle JC, Muleba M, et al. Complete Anopheles funestus mitogenomes reveal an ancient history of mitochondrial lineages and their distribution in southern and central Africa. Sci Rep. 2018;8:9054.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouafou LBA, Ayala D, Makanga BK, Rahola N, Johnson HF, Heaton H, et al. Chromosomal reference genome sequences for the malaria mosquito, Anopheles coustani, Laveran, 1900. Wellcome Open Res. 2024;9:551.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campos M, Crepeau M, Lee Y, Gripkey H, Rompão H, Cornel AJ, et al. Complete mitogenome sequence of Anopheles coustani from São Tomé island. Mitochondrial DNA B Resour. 2020;5:3376–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wellcome Sanger Institute. Anopheles ziemanni genome assembly – BioProject – NCBI [Internet]. [cited 2024 Nov 27]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJEB53272/

  • Wellcome Sanger Tree of Life Programme. Anopheles ziemanni mitochondrion, completegenome- NCBI [Internet]. [cited 2024 Nov 27]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/ NC_064609.1

  • Soghigian J, Sither C, Justi SA, Morinaga G, Cassel BK, Vitek CJ, et al. Phylogenomics reveals the history of host use in mosquitoes. Nat Commun. 2023;14:6252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reidenbach KR, Cook S, Bertone MA, Harbach RE, Wiegmann BM, Besansky NJ. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evol Biol. 2009;9:298.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). MalarJ. 2020;19:70.

    Article 

    Google Scholar 

  • Chen T-Y, Vorsino AE, Kosinski KJ, Romero-Weaver AL, Buckner EA, Chiu JC, et al. A Magnetic-Bead-Based Mosquito DNA Extraction Protocol for Next-Generation Sequencing. J Vis Exp. 2021;15:170.

    Google Scholar 

  • Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45: e18.

    PubMed 

    Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenets Evol. 2013;69:313–9.

    Article 

    Google Scholar 

  • Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10: e1003537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Villegas L, Assis-Geraldo J, Koerich LB, Collier TC, Lee Y, Main BJ, et al. Characterization of the complete mitogenome of Anopheles aquasalis, and phylogenetic divergences among Anopheles from diverse geographic zones. PLoS ONE. 2019;14: e0219523.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krzywinski J, Grushko OG, Besansky NJ. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol. 2006;39:417–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38:3022–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross DE, Healey AJE, McKeown NJ, Thomas CJ, Macarie NA, Siaziyu V, et al. Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain. Sci Rep. 2022;12:240.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hendershot AL. Understanding the role of Anopheles coustani complex members as malaria vector species in the Democratic Republic of Congo [Internet] [thesis]. University of Notre Dame; 2021 [cited 2024 Dec 13]. Available from: https://curate.nd.edu/articles/thesis/Understanding_the_Role_of_i_An_coustani_C_i_omplex_Members_as_Malaria_Vector_Species_in_the_Democratic_Republic_of_Congo/24851787/1

  • Sites JW, Marshall JC. Operational criteria for delimiting species. Annu Rev Ecol Evol Syst. 2004;35:199–227.

    Article 

    Google Scholar 

  • Hending D. Cryptic species conservation: a review. Biol Rev. 2025;100:258–74.

    Article 
    PubMed 

    Google Scholar 

  • Ditter RE, Campos M, Crepeau MW, Pinto J, Toilibou A, Amina Y, et al. Anopheles gambiae on remote islands in the Indian Ocean: origins and prospects for malaria elimination by genetic modification of extant populations. Sci Rep. 2023;13:20830.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov IV, et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science. 2015;347:1258524.

    Article 
    PubMed 

    Google Scholar 

  • Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2;347:1258522.

  • Freitas LA, Russo CAM, Voloch CM, Mutaquiha OCF, Marques LP, Schrago CG. Diversification of the genus Anopheles and a neotropical clade from the late cretaceous. PLoS ONE. 2015;10: e0134462.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading