Modification of adipose mass by targeting distal enhancers of Ptrf | BMC Biology

  • Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol. 2014;76:225–49.

    PubMed 

    Google Scholar 

  • Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444:847–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Wu H, Yu W, Liu J, Peng J, Liao N, et al. Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation. Cell Death Differ. 2017;24:1588–97.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liou CJ, Lee YK, Ting NC, Chen YL, Shen SC, Wu SJ, et al. Protective effects of licochalcone A ameliorates obesity and non-alcoholic fatty liver disease via promotion of the SIRT-1/AMPK pathway in mice fed a high-fat diet. Cells. 2019;8:447.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouchi R, Takeuchi T, Akihisa M, Ohara N, Nakano Y, Nishitani R, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:136.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, et al. Crispr-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science. 2019;363:eaau629.

    Google Scholar 

  • Yang Z, Li P, Shang Q, Wang Y, He J, Ge S, et al. Crispr-mediated bmp9 ablation promotes liver steatosis via the down-regulation of pparalpha expression. Sci Adv. 2020;6:eabc5022.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott E. LeBlanc, Qiong, Wu, Pallavi, Lamba, D S, Sif, Anthony N, Imbalzano: Promoter-enhancer looping at the pparγ2 locus during adipogenic differentiation requires the prmt5 methyltransferase. Nucleic Acids Res. 2016;44:5133–47.

    Google Scholar 

  • Moseti D, Regassa A, Kim WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci. 2016;17:124.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li X, Zeng S, Chen L, Zhang Y, Li X, Zhang B, et al. An intronic enhancer of cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif. 2024;57:e13552.

    PubMed 

    Google Scholar 

  • Catarino RR, Stark A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev. 2018;32:202–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu X, Wu X, Xie W. Activation, decommissioning, and dememorization: enhancers in a life cycle. Trends Biochem Sci. 2023;48:673–88.

    PubMed 

    Google Scholar 

  • Brown JD, Feldman ZB, Doherty SP, Reyes JM, Rahl PB, Lin CY, et al. Bet bromodomain proteins regulate enhancer function during adipogenesis. Proc Natl Acad Sci U S A. 2018;115:2144–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung JY, Ain QU, Song Y, Yong SB, Kim YH. Targeted delivery of crispr interference system against fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res. 2019;29:1442–52.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Michurina S, Stafeev I, Boldyreva M, Truong VA, Ratner E, Menshikov M, et al. Transplantation of adipose-tissue-engineered constructs with CRISPR-mediated ucp1 activation. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24043844.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu L. Lessons from cavin-1 deficiency. Biochem Soc Trans. 2020;48:147–54.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-caveolar caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res. 2022;91:101094.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pilch PF, Liu L. Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab. 2011;22:318–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, et al. Ptrf-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008;132:113–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parton RG, Del PM. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol. 2013;14:98–112.

    PubMed 

    Google Scholar 

  • Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119:2623–33.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shastry S, Delgado MR, Dirik E, Turkmen M, Agarwal AK, Garg A. Congenital generalized lipodystrophy, type 4 (cgl4) associated with myopathy due to novel ptrf mutations. Am J Med Genet A. 2010;152A:2245–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mancioppi V, Daffara T, Romanisio M, Ceccarini G, Pelosini C, Santini F, et al. A new mutation in the cavin1/ptrf gene in two siblings with congenital generalized lipodystrophy type 4: case reports and review of the literature. Front Endocrinol. 2023;14:1212729.

    Google Scholar 

  • Ding SY, Lee MJ, Summer R, Liu L, Fried SK, Pilch PF. Pleiotropic effects of cavin-1 deficiency on lipid metabolism. J Biol Chem. 2014;289:8473–83.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Diaz S, Johnson LA, DeKroon RM, Moreno-Navarrete JM, Alzate O, Fernandez-Real JM, et al. Polymerase I and transcript release factor (ptrf) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J. 2014;28:3769–79.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang H, Pilch PF, Liu L. Cavin-1/ptrf mediates insulin-dependent focal adhesion remodeling and ameliorates high-fat diet-induced inflammatory responses in mice. J Biol Chem. 2019;294:10544–52.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Diaz S, Garcia-Rodriguez B, Gonzalez-Irazabal Y, Valero M, Lagos-Lizan J, Arbones-Mainar JM. Knockdown of ptrf ameliorates adipocyte differentiation and functionality of human mesenchymal stem cells. Am J Physiol-Cell Physiol. 2017;312:C83-91.

    PubMed 

    Google Scholar 

  • Li X, Zhong Z, Zhang R, Zhang J, Zhang Y, Zeng S, et al. Decoding the transcriptome of muscular dystrophy due to ptrf deficiency using single-nucleus rna sequencing. FASEB J. 2023;37:e22993.

    PubMed 

    Google Scholar 

  • Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, et al. Deletion of cavin/ptrf causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 2008;8:310–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ambele MA, Dessels C, Durandt C, Pepper MS. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16:725–34.

    PubMed 

    Google Scholar 

  • Burl RB, Ramseyer VD, Rondini EA, Pique-Regi R, Lee YH, Granneman JG. Deconstructing adipogenesis induced by beta3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 2018;28:300–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang CS, Loftus TM, Mandrup S, Lane MD. Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol. 1997;13:231–59.

    PubMed 

    Google Scholar 

  • Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Bio. 2019;20:242–58.

    Google Scholar 

  • Cote JA, Guenard F, Lessard J, Lapointe M, Biron S, Vohl MC, et al. Temporal changes in gene expression profile during mature adipocyte dedifferentiation. Int J Genomics. 2017;2017:2017:5149362.

    PubMed 

    Google Scholar 

  • Lee YS, Park EJ, Kim SM, Kim JY, Lee HJ. Anti-sarcopenic obesity effects of lonicera caerulea extract in high-fat diet-fed mice. Antioxidants. 2021;10:10:1633.

    PubMed 

    Google Scholar 

  • Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J Clin Endocrinol Metab. 2004;89:447–52.

    PubMed 

    Google Scholar 

  • MacLean PS, Higgins JA, Giles ED, Sherk VD, Jackman MR. The role for adipose tissue in weight regain after weight loss. Obes Rev. 2015;16(Suppl 1):45–54.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Salemi LM, Maitland M, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by ranbpm: molecular insights and disease implications. Open Biol. 2017;7:170081.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Murrin LC, Talbot JN. Ranbpm, a scaffolding protein in the immune and nervous systems. J Neuroimmune Pharmacol. 2007;2:290–5.

    PubMed 

    Google Scholar 

  • Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 2019;10:3763.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou M, Huang W, Jiang W, Wu Y, Chen Q. Role of cav-1 in hiv-1 tat-induced dysfunction of tight junctions and a β -transferring proteins. Oxid Med Cell Longev. 2019;2019:1–8.

    Google Scholar 

  • Ampey BC, Morschauser TJ, Ramadoss J, Magness RR. Domain-specific partitioning of uterine artery endothelial connexin43 and caveolin-1. Hypertension. 2016;68:982–8.

    PubMed 

    Google Scholar 

  • Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The nogo-B receptor promotes ras plasma membrane localization and activation. Oncogene. 2017;36:3406–16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev. 2018;19:406–20.

    PubMed 

    Google Scholar 

  • Castiglione RC, Barbosa C, Prota L, Marques-Neto SR, Perri-Oliveira M, Helal-Neto E, et al. Effects of preadipocytes derived from mice fed with high fat diet on the angiogenic potential of endothelial cells. Nutr Metab Cardiovas. 2018;28:937–43.

    Google Scholar 

  • Sarkar P, Thirumurugan K. Modulatory functions of bioactive fruits, vegetables and spices in adipogenesis and angiogenesis. J Funct Foods. 2019;53:318–36.

    Google Scholar 

  • Mori C, Lee JY, Tokumoto M, Satoh M. Cadmium toxicity is regulated by peroxisome proliferator-activated receptor delta in human proximal tubular cells. Int J Mol Sci. 2022;23:8652.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gold DA, Gent PM, Hamilton BA. Ror alpha in genetic control of cerebellum development: 50 staggering years. Brain Res. 2007;1140:19–25.

    PubMed 

    Google Scholar 

  • Cook JR, Matsumoto M, Banks AS, Kitamura T, Tsuchiya K, Accili D. A mutant allele encoding DNA binding-deficient foxo1 differentially regulates hepatic glucose and lipid metabolism. Diabetes. 2015;64:1951–65.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun W, Jia C, Zhang X, Wang Z, Li Y, Fang X. Identification of key genes related with aspartic acid metabolism and corresponding protein expression in human colon cancer with postoperative prognosis and the underlying molecular pathways prediction. Front Cell Dev Biol. 2022;10:812271.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu Z, Xu L, Cai T, Yuan G, Sun N, Lu C, et al. Clock represses preadipocytes adipogenesis via gilz. J Cell Physiol. 2018;233:6028–40.

    PubMed 

    Google Scholar 

  • Hulstrom V, Prats C, Vinten J. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy. Am J Physiol-Cell Physiol. 2013;304:C1168-75.

    PubMed 

    Google Scholar 

  • Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol. 2016;34:192–8.

    PubMed 

    Google Scholar 

  • Zhao MT, Shao NY, Hu S, Ma N, Srinivasan R, Jahanbani F, et al. Cell type-specific chromatin signatures underline regulatory DNA elements in human induced pluripotent stem cells and somatic cells. Circ Res. 2017;121:1237–50.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22:792–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • He M, Li Y, Tang Q, Li D, Jin L, Tian S, et al. Genome-wide chromatin structure changes during adipogenesis and myogenesis. Int J Biol Sci. 2018;14:1571–85.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagberg CE, Li Q, Kutschke M, Bhowmick D, Kiss E, Shabalina IG, et al. Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 2018;24:2746–56.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee YH, Chen SY, Wiesner RJ, Huang YF. Simple flow cytometric method used to assess lipid accumulation in fat cells. J Lipid Res. 2004;45:1162–7.

    PubMed 

    Google Scholar 

  • Han MH, Kim HJ, Jeong JW, Park C, Kim BW, Choi YH. Inhibition of adipocyte differentiation by anthocyanins isolated from the fruit of vitis coignetiae pulliat is associated with the activation of ampk signaling pathway. Toxicol Res-Ger. 2018;34:13–21.

    Google Scholar 

  • Kim JB, Spiegelman BM. Add1/srebp1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Gene Dev. 1996;10:1096–107.

    PubMed 

    Google Scholar 

  • Choy L, Derynck R. Transforming growth factor-beta inhibits adipocyte differentiation by smad3 interacting with ccaat/enhancer-binding protein (c/ebp) and repressing c/ebp transactivation function. J Biol Chem. 2003;278:9609–19.

    PubMed 

    Google Scholar 

  • Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, et al. Transcription factor trapping by RNA in gene regulatory elements. Science. 2015;350:978–81.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai Y, Zhang Y, Loh YP, Tng JQ, Lim MC, Cao Z, et al. H3k27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nat Commun. 2021;12:719.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaffler A, Scholmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31:228–35.

    PubMed 

    Google Scholar 

  • Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404:652–60.

    PubMed 

    Google Scholar 

  • Ogrodnik M, Zhu Y, Langhi L, Tchkonia T, Kruger P, Fielder E, et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2019;29:1061–77.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Donahoo W, Wyatt HR, Kriehn J, Stuht J, Dong F, Hosokawa P, et al. Dietary fat increases energy intake across the range of typical consumption in the United States. Obesity. 2008;16:64–9.

    PubMed 

    Google Scholar 

  • Pan DZ, Garske KM, Alvarez M, Bhagat YV, Boocock J, Nikkola E, et al. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from gwas. Nat Commun. 2018;9:1512.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcelin G, Gautier EL, Clement K. Adipose tissue fibrosis in obesity: etiology and challenges. Annu Rev Physiol. 2022;84:135–55.

    PubMed 

    Google Scholar 

  • Choi M, Kim D, Youn YJ, Ryu J, Jeong YH. Effect of obesity and high-density lipoprotein concentration on the pathological characteristics of Alzheimer’s disease in high-fat diet-fed mice. Int J Mol Sci. 2022;23:12296.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramirez AK, Dankel SN, Rastegarpanah B, Cai W, Xue R, Crovella M, et al. Single-cell transcriptional networks in differentiating preadipocytes suggest drivers associated with tissue heterogeneity. Nat Commun. 2020;11:2117.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee S, Benvie AM, Park HG, Spektor R, Harlan B, Brenna JT, et al. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Commun Biol. 2022;5:584.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khater IM, Meng F, Nabi IR, Hamarneh G. Identification of caveolin-1 domain signatures via machine learning and graphlet analysis of single-molecule super-resolution data. Bioinformatics. 2019;35:3468–75.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gould ML, Williams G, Nicholson HD. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate. 2010;70:1609–21.

    PubMed 

    Google Scholar 

  • Liu L, Pilch PF. Ptrf/cavin-1 promotes efficient ribosomal rna transcription in response to metabolic challenges. Elife. 2016;5:e17508.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jansa P, Burek C, Sander EE, Grummt I. The transcript release factor ptrf augments ribosomal gene transcription by facilitating reinitiation of rna polymerase i. Nucleic Acids Res. 2001;29:423–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni Y, Hao J, Hou X, Du W, Yu Y, Chen T, et al. Dephosphorylated polymerase i and transcript release factor prevents allergic asthma exacerbations by limiting IL-33 release. Front Immunol. 2018;9:1422.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Volonte D, Galbiati F. Polymerase I and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence. J Biol Chem. 2011;286:28657–61.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, et al. The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics. 2018;8:1540–57.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cen X, Chen Q, Wang B, Xu H, Wang X, Ling Y, et al. Ube2o ubiquitinates ptrf/cavin1 and inhibits the secretion of exosome-related ptrf/cavin1. Cell Commun Signal. 2022;20:191.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao Y, Wang Y, Zhao E, Tan Y, Geng B, Kang C, et al. Ptrf/cavin1, regulated by shc1 through the egfr pathway, is found in urine exosomes as a potential biomarker of ccrcc. Carcinogenesis. 2020;41:274–83.

    PubMed 

    Google Scholar 

  • Cermak T, Curtin SJ. Design and assembly of CRISPR/Cas9 reagents for gene knockout, targeted insertion, and replacement in wheat. Methods Mol Biol. 2017;1679:187–212.

    PubMed 

    Google Scholar 

  • Chioni AM, Grose RP. Biological significance and targeting of the FGFR axis in cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13225681.

    Article 
    PubMed 

    Google Scholar 

  • Esparza-Baquer A, Labiano I, Sharif O, Agirre-Lizaso A, Oakley F, Rodrigues PM, et al. Trem-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut. 2021;70:1345–61.

    PubMed 

    Google Scholar 

  • Cai R, Lv R, Shi X, Yang G, Jin J. Crispr/dcas9 tools: epigenetic mechanism and application in gene transcriptional regulation. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241914865.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohamad ZN, Abuhamad AY, Low TY, Mohtar MA, Syafruddin SE. Dcas9 tells tales: probing gene function and transcription regulation in cancer. CRISPR J. 2024;7:73–87.

    Google Scholar 

  • Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, et al. Crispr interference-based specific and efficient gene inactivation in the brain. Nat Neurosci. 2018;21:447–54.

    PubMed 

    Google Scholar 

  • Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, et al. Crispri-based genome-scale identification of functional long noncoding rna loci in human cells. Science. 2017;355:39.

    Google Scholar 

  • Gersbach CA, Shivakumar NK, Thakore PI, Safi A, D’Ippolito AM. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Mol Ther. 2015;23:S192-3.

    Google Scholar 

  • Larke M, Schwessinger R, Nojima T, Telenius J, Beagrie RA, Downes DJ, et al. Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Mol Cell. 2021;81:983–97.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li K, Zhang Y, Liu X, Liu Y, Gu Z, Cao H, et al. Noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. Cancer Discov. 2020;10:19–1128.

    Google Scholar 

  • Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol. 2022;23:481–97.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ke-Ren L, Xiao-Kai LI, Ruo-Wei Z, Yi-Ren GU, Min-Jie DU, Xiang-Yang X, et al. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs. J Integr Agr. 2022;21:2675–90.

    Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–8.

    PubMed 

    Google Scholar 

  • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134–53.

    PubMed 

    Google Scholar 

  • Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. Scenic: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–53.

    PubMed 

    Google Scholar 

  • van de Werken HJ, de Vree PJ, Splinter E, Holwerda SJ, Klous P, de Wit E, et al. 4c technology: protocols and data analysis. Methods Enzymol. 2012;513:89–112.

    PubMed 

    Google Scholar 

  • Krijger P, Geeven G, Bianchi V, Hilvering C, Laat WD. 4c-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods. 2020;170:17–32.

    PubMed 

    Google Scholar 

  • Supat T, Stadhouders R, Grosveld FG, Soler E, Lenhard B. R3cseq: an R/bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res. 2013;41:e132.

    Google Scholar 

  • Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell. 2010;143:156–69.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsumura Y, Nakaki R, Inagaki T, Yoshida A, Kano Y, Kimura H, et al. H3k4/h3k9me3 bivalent chromatin domains targeted by lineage-specific dna methylation pauses adipocyte differentiation. Mol Cell. 2015;60:584–96.

    PubMed 

    Google Scholar 

  • Siersbaek R, Madsen J, Javierre BM, Nielsen R, Bagge EK, Cairns J, et al. Dynamic rewiring of promoter-anchored chromatin loops during adipocyte differentiation. Mol Cell. 2017;66:420–35.

    PubMed 

    Google Scholar 

  • Roh HC, Tsai LT, Lyubetskaya A, Tenen D, Kumari M, Rosen ED. Simultaneous transcriptional and epigenomic profiling from specific cell types within heterogeneous tissues in vivo. Cell Rep. 2017;18:1048–61.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Siersbaek R, Nielsen R, John S, Sung MH, Baek S, Loft A, et al. Extensive chromatin remodelling and establishment of transcription factor “hotspots” during early adipogenesis. EMBO J. 2011;30:1459–72.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuvikene J, Esvald EE, Rahni A, Uustalu K, Zhuravskaya A, Avarlaid A, et al. Intronic enhancer region governs transcript-specific bdnf expression in rodent neurons. Elife. 2021. https://doi.org/10.7554/eLife.65161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Q, Liu W, Zhang HM, Xie GY, Guo AY. Htftarget: a comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics. 2020;18:120–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Anthony M, Oriol F, Arenillas DJ, Chih-Yu C, Grégoire D, Jessica L, et al. Jaspar 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110–5.

    Google Scholar 

  • Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. Animaltfdb 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019;47:D33-8.

    PubMed 

    Google Scholar 

  • Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome data browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729–35.

    PubMed 

    Google Scholar 

  • Continue Reading