Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol. 2014;76:225–49.
Google Scholar
Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444:847–53.
Google Scholar
Wang X, Wu H, Yu W, Liu J, Peng J, Liao N, et al. Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation. Cell Death Differ. 2017;24:1588–97.
Google Scholar
Liou CJ, Lee YK, Ting NC, Chen YL, Shen SC, Wu SJ, et al. Protective effects of licochalcone A ameliorates obesity and non-alcoholic fatty liver disease via promotion of the SIRT-1/AMPK pathway in mice fed a high-fat diet. Cells. 2019;8:447.
Google Scholar
Bouchi R, Takeuchi T, Akihisa M, Ohara N, Nakano Y, Nishitani R, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:136.
Google Scholar
Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, et al. Crispr-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science. 2019;363:eaau629.
Yang Z, Li P, Shang Q, Wang Y, He J, Ge S, et al. Crispr-mediated bmp9 ablation promotes liver steatosis via the down-regulation of pparalpha expression. Sci Adv. 2020;6:eabc5022.
Google Scholar
Scott E. LeBlanc, Qiong, Wu, Pallavi, Lamba, D S, Sif, Anthony N, Imbalzano: Promoter-enhancer looping at the pparγ2 locus during adipogenic differentiation requires the prmt5 methyltransferase. Nucleic Acids Res. 2016;44:5133–47.
Moseti D, Regassa A, Kim WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci. 2016;17:124.
Google Scholar
Li X, Zeng S, Chen L, Zhang Y, Li X, Zhang B, et al. An intronic enhancer of cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif. 2024;57:e13552.
Google Scholar
Catarino RR, Stark A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev. 2018;32:202–23.
Google Scholar
Wu X, Wu X, Xie W. Activation, decommissioning, and dememorization: enhancers in a life cycle. Trends Biochem Sci. 2023;48:673–88.
Google Scholar
Brown JD, Feldman ZB, Doherty SP, Reyes JM, Rahl PB, Lin CY, et al. Bet bromodomain proteins regulate enhancer function during adipogenesis. Proc Natl Acad Sci U S A. 2018;115:2144–9.
Google Scholar
Chung JY, Ain QU, Song Y, Yong SB, Kim YH. Targeted delivery of crispr interference system against fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res. 2019;29:1442–52.
Google Scholar
Michurina S, Stafeev I, Boldyreva M, Truong VA, Ratner E, Menshikov M, et al. Transplantation of adipose-tissue-engineered constructs with CRISPR-mediated ucp1 activation. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24043844.
Google Scholar
Liu L. Lessons from cavin-1 deficiency. Biochem Soc Trans. 2020;48:147–54.
Google Scholar
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-caveolar caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res. 2022;91:101094.
Google Scholar
Pilch PF, Liu L. Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab. 2011;22:318–24.
Google Scholar
Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, et al. Ptrf-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008;132:113–24.
Google Scholar
Parton RG, Del PM. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol. 2013;14:98–112.
Google Scholar
Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119:2623–33.
Google Scholar
Shastry S, Delgado MR, Dirik E, Turkmen M, Agarwal AK, Garg A. Congenital generalized lipodystrophy, type 4 (cgl4) associated with myopathy due to novel ptrf mutations. Am J Med Genet A. 2010;152A:2245–53.
Google Scholar
Mancioppi V, Daffara T, Romanisio M, Ceccarini G, Pelosini C, Santini F, et al. A new mutation in the cavin1/ptrf gene in two siblings with congenital generalized lipodystrophy type 4: case reports and review of the literature. Front Endocrinol. 2023;14:1212729.
Ding SY, Lee MJ, Summer R, Liu L, Fried SK, Pilch PF. Pleiotropic effects of cavin-1 deficiency on lipid metabolism. J Biol Chem. 2014;289:8473–83.
Google Scholar
Perez-Diaz S, Johnson LA, DeKroon RM, Moreno-Navarrete JM, Alzate O, Fernandez-Real JM, et al. Polymerase I and transcript release factor (ptrf) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J. 2014;28:3769–79.
Google Scholar
Wang H, Pilch PF, Liu L. Cavin-1/ptrf mediates insulin-dependent focal adhesion remodeling and ameliorates high-fat diet-induced inflammatory responses in mice. J Biol Chem. 2019;294:10544–52.
Google Scholar
Perez-Diaz S, Garcia-Rodriguez B, Gonzalez-Irazabal Y, Valero M, Lagos-Lizan J, Arbones-Mainar JM. Knockdown of ptrf ameliorates adipocyte differentiation and functionality of human mesenchymal stem cells. Am J Physiol-Cell Physiol. 2017;312:C83-91.
Google Scholar
Li X, Zhong Z, Zhang R, Zhang J, Zhang Y, Zeng S, et al. Decoding the transcriptome of muscular dystrophy due to ptrf deficiency using single-nucleus rna sequencing. FASEB J. 2023;37:e22993.
Google Scholar
Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, et al. Deletion of cavin/ptrf causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 2008;8:310–7.
Google Scholar
Ambele MA, Dessels C, Durandt C, Pepper MS. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16:725–34.
Google Scholar
Burl RB, Ramseyer VD, Rondini EA, Pique-Regi R, Lee YH, Granneman JG. Deconstructing adipogenesis induced by beta3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 2018;28:300–9.
Google Scholar
Hwang CS, Loftus TM, Mandrup S, Lane MD. Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol. 1997;13:231–59.
Google Scholar
Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Bio. 2019;20:242–58.
Cote JA, Guenard F, Lessard J, Lapointe M, Biron S, Vohl MC, et al. Temporal changes in gene expression profile during mature adipocyte dedifferentiation. Int J Genomics. 2017;2017:2017:5149362.
Google Scholar
Lee YS, Park EJ, Kim SM, Kim JY, Lee HJ. Anti-sarcopenic obesity effects of lonicera caerulea extract in high-fat diet-fed mice. Antioxidants. 2021;10:10:1633.
Google Scholar
Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J Clin Endocrinol Metab. 2004;89:447–52.
Google Scholar
MacLean PS, Higgins JA, Giles ED, Sherk VD, Jackman MR. The role for adipose tissue in weight regain after weight loss. Obes Rev. 2015;16(Suppl 1):45–54.
Google Scholar
Salemi LM, Maitland M, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by ranbpm: molecular insights and disease implications. Open Biol. 2017;7:170081.
Google Scholar
Murrin LC, Talbot JN. Ranbpm, a scaffolding protein in the immune and nervous systems. J Neuroimmune Pharmacol. 2007;2:290–5.
Google Scholar
Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 2019;10:3763.
Google Scholar
Zou M, Huang W, Jiang W, Wu Y, Chen Q. Role of cav-1 in hiv-1 tat-induced dysfunction of tight junctions and a β -transferring proteins. Oxid Med Cell Longev. 2019;2019:1–8.
Ampey BC, Morschauser TJ, Ramadoss J, Magness RR. Domain-specific partitioning of uterine artery endothelial connexin43 and caveolin-1. Hypertension. 2016;68:982–8.
Google Scholar
Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The nogo-B receptor promotes ras plasma membrane localization and activation. Oncogene. 2017;36:3406–16.
Google Scholar
Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev. 2018;19:406–20.
Google Scholar
Castiglione RC, Barbosa C, Prota L, Marques-Neto SR, Perri-Oliveira M, Helal-Neto E, et al. Effects of preadipocytes derived from mice fed with high fat diet on the angiogenic potential of endothelial cells. Nutr Metab Cardiovas. 2018;28:937–43.
Sarkar P, Thirumurugan K. Modulatory functions of bioactive fruits, vegetables and spices in adipogenesis and angiogenesis. J Funct Foods. 2019;53:318–36.
Mori C, Lee JY, Tokumoto M, Satoh M. Cadmium toxicity is regulated by peroxisome proliferator-activated receptor delta in human proximal tubular cells. Int J Mol Sci. 2022;23:8652.
Google Scholar
Gold DA, Gent PM, Hamilton BA. Ror alpha in genetic control of cerebellum development: 50 staggering years. Brain Res. 2007;1140:19–25.
Google Scholar
Cook JR, Matsumoto M, Banks AS, Kitamura T, Tsuchiya K, Accili D. A mutant allele encoding DNA binding-deficient foxo1 differentially regulates hepatic glucose and lipid metabolism. Diabetes. 2015;64:1951–65.
Google Scholar
Sun W, Jia C, Zhang X, Wang Z, Li Y, Fang X. Identification of key genes related with aspartic acid metabolism and corresponding protein expression in human colon cancer with postoperative prognosis and the underlying molecular pathways prediction. Front Cell Dev Biol. 2022;10:812271.
Google Scholar
Zhu Z, Xu L, Cai T, Yuan G, Sun N, Lu C, et al. Clock represses preadipocytes adipogenesis via gilz. J Cell Physiol. 2018;233:6028–40.
Google Scholar
Hulstrom V, Prats C, Vinten J. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy. Am J Physiol-Cell Physiol. 2013;304:C1168-75.
Google Scholar
Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol. 2016;34:192–8.
Google Scholar
Zhao MT, Shao NY, Hu S, Ma N, Srinivasan R, Jahanbani F, et al. Cell type-specific chromatin signatures underline regulatory DNA elements in human induced pluripotent stem cells and somatic cells. Circ Res. 2017;121:1237–50.
Google Scholar
Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22:792–9.
Google Scholar
He M, Li Y, Tang Q, Li D, Jin L, Tian S, et al. Genome-wide chromatin structure changes during adipogenesis and myogenesis. Int J Biol Sci. 2018;14:1571–85.
Google Scholar
Hagberg CE, Li Q, Kutschke M, Bhowmick D, Kiss E, Shabalina IG, et al. Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 2018;24:2746–56.
Google Scholar
Lee YH, Chen SY, Wiesner RJ, Huang YF. Simple flow cytometric method used to assess lipid accumulation in fat cells. J Lipid Res. 2004;45:1162–7.
Google Scholar
Han MH, Kim HJ, Jeong JW, Park C, Kim BW, Choi YH. Inhibition of adipocyte differentiation by anthocyanins isolated from the fruit of vitis coignetiae pulliat is associated with the activation of ampk signaling pathway. Toxicol Res-Ger. 2018;34:13–21.
Kim JB, Spiegelman BM. Add1/srebp1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Gene Dev. 1996;10:1096–107.
Google Scholar
Choy L, Derynck R. Transforming growth factor-beta inhibits adipocyte differentiation by smad3 interacting with ccaat/enhancer-binding protein (c/ebp) and repressing c/ebp transactivation function. J Biol Chem. 2003;278:9609–19.
Google Scholar
Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, et al. Transcription factor trapping by RNA in gene regulatory elements. Science. 2015;350:978–81.
Google Scholar
Cai Y, Zhang Y, Loh YP, Tng JQ, Lim MC, Cao Z, et al. H3k27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nat Commun. 2021;12:719.
Google Scholar
Schaffler A, Scholmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31:228–35.
Google Scholar
Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404:652–60.
Google Scholar
Ogrodnik M, Zhu Y, Langhi L, Tchkonia T, Kruger P, Fielder E, et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2019;29:1061–77.
Google Scholar
Donahoo W, Wyatt HR, Kriehn J, Stuht J, Dong F, Hosokawa P, et al. Dietary fat increases energy intake across the range of typical consumption in the United States. Obesity. 2008;16:64–9.
Google Scholar
Pan DZ, Garske KM, Alvarez M, Bhagat YV, Boocock J, Nikkola E, et al. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from gwas. Nat Commun. 2018;9:1512.
Google Scholar
Marcelin G, Gautier EL, Clement K. Adipose tissue fibrosis in obesity: etiology and challenges. Annu Rev Physiol. 2022;84:135–55.
Google Scholar
Choi M, Kim D, Youn YJ, Ryu J, Jeong YH. Effect of obesity and high-density lipoprotein concentration on the pathological characteristics of Alzheimer’s disease in high-fat diet-fed mice. Int J Mol Sci. 2022;23:12296.
Google Scholar
Ramirez AK, Dankel SN, Rastegarpanah B, Cai W, Xue R, Crovella M, et al. Single-cell transcriptional networks in differentiating preadipocytes suggest drivers associated with tissue heterogeneity. Nat Commun. 2020;11:2117.
Google Scholar
Lee S, Benvie AM, Park HG, Spektor R, Harlan B, Brenna JT, et al. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Commun Biol. 2022;5:584.
Google Scholar
Khater IM, Meng F, Nabi IR, Hamarneh G. Identification of caveolin-1 domain signatures via machine learning and graphlet analysis of single-molecule super-resolution data. Bioinformatics. 2019;35:3468–75.
Google Scholar
Gould ML, Williams G, Nicholson HD. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate. 2010;70:1609–21.
Google Scholar
Liu L, Pilch PF. Ptrf/cavin-1 promotes efficient ribosomal rna transcription in response to metabolic challenges. Elife. 2016;5:e17508.
Google Scholar
Jansa P, Burek C, Sander EE, Grummt I. The transcript release factor ptrf augments ribosomal gene transcription by facilitating reinitiation of rna polymerase i. Nucleic Acids Res. 2001;29:423–9.
Google Scholar
Ni Y, Hao J, Hou X, Du W, Yu Y, Chen T, et al. Dephosphorylated polymerase i and transcript release factor prevents allergic asthma exacerbations by limiting IL-33 release. Front Immunol. 2018;9:1422.
Google Scholar
Volonte D, Galbiati F. Polymerase I and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence. J Biol Chem. 2011;286:28657–61.
Google Scholar
Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, et al. The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics. 2018;8:1540–57.
Google Scholar
Cen X, Chen Q, Wang B, Xu H, Wang X, Ling Y, et al. Ube2o ubiquitinates ptrf/cavin1 and inhibits the secretion of exosome-related ptrf/cavin1. Cell Commun Signal. 2022;20:191.
Google Scholar
Zhao Y, Wang Y, Zhao E, Tan Y, Geng B, Kang C, et al. Ptrf/cavin1, regulated by shc1 through the egfr pathway, is found in urine exosomes as a potential biomarker of ccrcc. Carcinogenesis. 2020;41:274–83.
Google Scholar
Cermak T, Curtin SJ. Design and assembly of CRISPR/Cas9 reagents for gene knockout, targeted insertion, and replacement in wheat. Methods Mol Biol. 2017;1679:187–212.
Google Scholar
Chioni AM, Grose RP. Biological significance and targeting of the FGFR axis in cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13225681.
Google Scholar
Esparza-Baquer A, Labiano I, Sharif O, Agirre-Lizaso A, Oakley F, Rodrigues PM, et al. Trem-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut. 2021;70:1345–61.
Google Scholar
Cai R, Lv R, Shi X, Yang G, Jin J. Crispr/dcas9 tools: epigenetic mechanism and application in gene transcriptional regulation. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241914865.
Google Scholar
Mohamad ZN, Abuhamad AY, Low TY, Mohtar MA, Syafruddin SE. Dcas9 tells tales: probing gene function and transcription regulation in cancer. CRISPR J. 2024;7:73–87.
Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, et al. Crispr interference-based specific and efficient gene inactivation in the brain. Nat Neurosci. 2018;21:447–54.
Google Scholar
Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, et al. Crispri-based genome-scale identification of functional long noncoding rna loci in human cells. Science. 2017;355:39.
Gersbach CA, Shivakumar NK, Thakore PI, Safi A, D’Ippolito AM. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Mol Ther. 2015;23:S192-3.
Larke M, Schwessinger R, Nojima T, Telenius J, Beagrie RA, Downes DJ, et al. Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Mol Cell. 2021;81:983–97.
Google Scholar
Li K, Zhang Y, Liu X, Liu Y, Gu Z, Cao H, et al. Noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. Cancer Discov. 2020;10:19–1128.
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol. 2022;23:481–97.
Google Scholar
Ke-Ren L, Xiao-Kai LI, Ruo-Wei Z, Yi-Ren GU, Min-Jie DU, Xiang-Yang X, et al. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs. J Integr Agr. 2022;21:2675–90.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–8.
Google Scholar
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.
Google Scholar
Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134–53.
Google Scholar
Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. Scenic: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.
Google Scholar
McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–53.
Google Scholar
van de Werken HJ, de Vree PJ, Splinter E, Holwerda SJ, Klous P, de Wit E, et al. 4c technology: protocols and data analysis. Methods Enzymol. 2012;513:89–112.
Google Scholar
Krijger P, Geeven G, Bianchi V, Hilvering C, Laat WD. 4c-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods. 2020;170:17–32.
Google Scholar
Supat T, Stadhouders R, Grosveld FG, Soler E, Lenhard B. R3cseq: an R/bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res. 2013;41:e132.
Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell. 2010;143:156–69.
Google Scholar
Matsumura Y, Nakaki R, Inagaki T, Yoshida A, Kano Y, Kimura H, et al. H3k4/h3k9me3 bivalent chromatin domains targeted by lineage-specific dna methylation pauses adipocyte differentiation. Mol Cell. 2015;60:584–96.
Google Scholar
Siersbaek R, Madsen J, Javierre BM, Nielsen R, Bagge EK, Cairns J, et al. Dynamic rewiring of promoter-anchored chromatin loops during adipocyte differentiation. Mol Cell. 2017;66:420–35.
Google Scholar
Roh HC, Tsai LT, Lyubetskaya A, Tenen D, Kumari M, Rosen ED. Simultaneous transcriptional and epigenomic profiling from specific cell types within heterogeneous tissues in vivo. Cell Rep. 2017;18:1048–61.
Google Scholar
Siersbaek R, Nielsen R, John S, Sung MH, Baek S, Loft A, et al. Extensive chromatin remodelling and establishment of transcription factor “hotspots” during early adipogenesis. EMBO J. 2011;30:1459–72.
Google Scholar
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.
Google Scholar
Tuvikene J, Esvald EE, Rahni A, Uustalu K, Zhuravskaya A, Avarlaid A, et al. Intronic enhancer region governs transcript-specific bdnf expression in rodent neurons. Elife. 2021. https://doi.org/10.7554/eLife.65161.
Google Scholar
Zhang Q, Liu W, Zhang HM, Xie GY, Guo AY. Htftarget: a comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics. 2020;18:120–8.
Google Scholar
Anthony M, Oriol F, Arenillas DJ, Chih-Yu C, Grégoire D, Jessica L, et al. Jaspar 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110–5.
Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. Animaltfdb 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019;47:D33-8.
Google Scholar
Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome data browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729–35.
Google Scholar