Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12(3):e694.
Google Scholar
Choe K, Pak U, Pang Y, Hao W, Yang X. Advances and challenges in spatial transcriptomics for developmental biology. Biomolecules. 2023;13(1):156.
Google Scholar
Ma Y, Zhou X. Accurate and efficient integrative reference-informed spatial domain detection for spatial transcriptomics. Nat Methods. 2024;21(7):1231–44.
Google Scholar
Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun. 2022;13(1):1739.
Google Scholar
Liang Y, Shi G, Cai R, Yuan Y, Xie Z, Yu L, et al. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics. Nat Commun. 2024;15(1):600.
Google Scholar
Su H, Wu Y, Chen B, Cui Y. STANCE: a unified statistical model to detect cell-type-specific spatially variable genes in spatial transcriptomics. Nat Commun. 2025;16(1):1793.
Google Scholar
Zhang C, Dong K, Aihara K, Chen L, Zhang S. STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning. Nucleic Acids Res. 2023;51(20):e103-e.
Cang Z, Zhao Y, Almet AA, Stabell A, Ramos R, Plikus MV, et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat Methods. 2023;20(2):218–28.
Google Scholar
Yang W, Wang P, Xu S, Wang T, Luo M, Cai Y, et al. Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network. Nat Commun. 2024;15(1):7101.
Google Scholar
Xia C, Fan J, Emanuel G, Hao J, Zhuang X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci U S A. 2019;116(39):19490–9.
Google Scholar
Zhang M, Eichhorn SW, Zingg B, Yao Z, Cotter K, Zeng H, et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature. 2021;598(7879):137–43.
Google Scholar
Shah S, Lubeck E, Zhou W, Cai L. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus. Neuron. 2017;94(4):752–8 e1.
Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature. 2019;568(7751):235–9.
Google Scholar
Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods. 2018;15(11):932–5.
Google Scholar
Bhattacherjee A, Djekidel MN, Chen R, Chen W, Tuesta LM, Zhang Y. Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Nat Commun. 2019;10(1):4169.
Google Scholar
Zeng H, Huang J, Zhou H, Meilandt WJ, Dejanovic B, Zhou Y, et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nat Neurosci. 2023;26(3):430–46.
Google Scholar
Hernandez S, Lazcano R, Serrano A, Powell S, Kostousov L, Mehta J, et al. Challenges and opportunities for immunoprofiling using a spatial high-plex technology: the NanoString GeoMx((R)) digital spatial profiler. Front Oncol. 2022;12:890410.
Google Scholar
Russell AJC, Weir JA, Nadaf NM, Shabet M, Kumar V, Kambhampati S, et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature. 2024;625(7993):101–9.
Google Scholar
Fan Z, Luo Y, Lu H, Wang T, Feng Y, Zhao W, et al. SPASCER: spatial transcriptomics annotation at single-cell resolution. Nucleic Acids Res. 2023;51(D1):D1138–49.
Google Scholar
Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019;20(5):273–82.
Google Scholar
Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15(6):e8746.
Google Scholar
Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science. 2018;362(6416):eaau5324.
Google Scholar
Xu C, Lopez R, Mehlman E, Regier J, Jordan MI, Yosef N. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol Syst Biol. 2021;17(1):e9620.
Google Scholar
Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. 2022;40(4):517–26.
Google Scholar
Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger A, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods. 2021;18(11):1352–62.
Google Scholar
Liu J, Tran V, Vemuri VNP, Byrne A, Borja M, Kim YJ, et al. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing. Life Sci Alliance. 2023;6(1):e202201701
Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS, editors. Heterogeneous graph attention network. The world wide web conference; 2019.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z, editors. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.
Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019;9(1):5233.
Google Scholar
Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 20182018;361(6400):eaat5691
Wei R, He S, Bai S, Sei E, Hu M, Thompson A, et al. Spatial charting of single-cell transcriptomes in tissues. Nat Biotechnol. 2022;40(8):1190–9.
Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–87. e29.
Choi J, Li J, Ferdous S, Liang Q, Moffitt JR, Chen R. Spatial organization of the mouse retina at single cell resolution by MERFISH. Nat Commun. 2023;14(1):4929.
Google Scholar
Hoang T, Wang J, Boyd P, Wang F, Santiago C, Jiang L, et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science. 2020;370(6519):eabb8598
Hahn J, Monavarfeshani A, Qiao M, Kao AH, Kolsch Y, Kumar A, et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature. 2023;624(7991):415–24.
Google Scholar
Santos G, Prazeres P, Mintz A, Birbrair A. Role of pericytes in the retina. Eye. 2018;32(3):483–6.
Google Scholar
Yang S, Zhou J, Li D. Functions and diseases of the retinal pigment epithelium. Front Pharmacol. 2021;12:727870.
Google Scholar
Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174(4):999–1014 e22.
Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun. 2022;13(1):4594.
Google Scholar
Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184(2):404–21 e16.
Zhao D, Chen S, Cai J, Guo Y, Song Z, Che J, et al. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS ONE. 2009;4(7):e6468.
Google Scholar
Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 2022;41(1):68.
Google Scholar
Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A, et al. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A. 2019;116(18):9020–9.
Google Scholar
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The genecards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1 30 1–1 3.
Muller AM, Hermanns MI, Skrzynski C, Nesslinger M, Muller KM, Kirkpatrick CJ. Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Exp Mol Pathol. 2002;72(3):221–9.
Google Scholar
Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48(1):11–23.
Google Scholar
Yang C, Siebert JR, Burns R, Gerbec ZJ, Bonacci B, Rymaszewski A, et al. Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome. Nat Commun. 2019;10(1):3931.
Google Scholar
Revel M, Sautes-Fridman C, Fridman WH, Roumenina LT. C1q+ macrophages: passengers or drivers of cancer progression. Trends Cancer. 2022;8(7):517–26.
Google Scholar
Zhang Q, Liu W, Zhang HM, Xie GY, Miao YR, Xia M, et al. hTFtarget: a comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics. 2020;18(2):120–8.
Google Scholar
Fan H, Zhang H, Pascuzzi PE, Andrisani O. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2016;35(6):715–26.
Google Scholar
Jiang XL, Deng B, Deng SH, Cai M, Ding WJ, Tan ZB, et al. Dihydrotanshinone I inhibits the growth of hepatoma cells by direct inhibition of Src. Phytomedicine. 2022;95:153705.
Google Scholar
Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell. 2022;185(23):4428–47 e28.
Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci. 2009;12(11):1398–406.
Google Scholar
Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50(D1):D687–92.
Google Scholar
Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.
Google Scholar
Soomro SH, Jie J, Fu H. Oligodendrocytes development and Wnt signaling pathway. Int J Hum Anat. 2018;1(3):17–35.
Miyashita Y. Operating principles of the cerebral cortex as a six-layered network in primates: beyond the classic canonical circuit model. Proc Jpn Acad Ser B Phys Biol Sci. 2022;98(3):93–111.
Google Scholar
Cao L, Yang C, Hu L, Jiang W, Ren Y, Xia T, et al. Deciphering spatial domains from spatially resolved transcriptomics with Siamese graph autoencoder. Gigascience. 2024;13(1).
Mills JD, Kavanagh T, Kim WS, Chen BJ, Kawahara Y, Halliday GM, et al. Unique transcriptome patterns of the white and grey matter corroborate structural and functional heterogeneity in the human frontal lobe. PLoS ONE. 2013;8(10):e78480.
Google Scholar
Brown TG, Thayer MN, VanTreeck JG, Zarate N, Hart DW, Heilbronner S, et al. Striatal spatial heterogeneity, clustering, and white matter association of GFAP(+) astrocytes in a mouse model of Huntington’s disease. Front Cell Neurosci. 2023;17:1094503.
Google Scholar
Blacker CJ, Millischer V, Webb LM, Ho AMC, Schalling M, Frye MA, et al. EAAT2 as a research target in bipolar disorder and unipolar depression: a systematic review. Mol Neuropsychiatry. 2020;5(Suppl 1):44–59.
Google Scholar
Hofmann K, Rodriguez-Rodriguez R, Gaebler A, Casals N, Scheller A, Kuerschner L. Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci Rep. 2017;7(1):10779.
Google Scholar
Kubo KI. Increased densities of white matter neurons as a cross-disease feature of neuropsychiatric disorders. Psychiatry Clin Neurosci. 2020;74(3):166–75.
Google Scholar
Wolf FA, Angerer P, Theis FJ. Scanpy: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15.
Google Scholar
Ren P, Zhang R, Wang Y, Zhang P, Luo C, Wang S, et al. Systematic benchmarking of high-throughput subcellular spatial transcriptomics platforms. Biorxiv. 2024:2024.12. 23.630033.
Zhu J, Sun S, Zhou X. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 2021;22(1):184.
Google Scholar
Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes. Nat Methods. 2018;15(5):343–6.
Google Scholar
Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022;14(1):68.
Google Scholar
Liu J, Liu W, Chai X, Zhang X, Lin Z. CAESAR: a cross-technology and cross-resolution framework for spatial omics annotation. 2024.
Bard J, Rhee SY, Ashburner M. An ontology for cell types. Genome Biol. 2005;6(2):R21.
Google Scholar
Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv preprint arXiv:160706450. 2016.
Zhang Z, editor Improved adam optimizer for deep neural networks. 2018 IEEE/ACM 26th international symposium on quality of service (IWQoS); 2018: Ieee.
Zhang X, Zou Y, Shi W, editors. Dilated convolution neural network with LeakyReLU for environmental sound classification. 2017 22nd international conference on digital signal processing (DSP); 2017: Ieee.
Liu X, Shen Q, Zhang S. Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network. Genome Res. 2023;33(1):96–111.
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Google Scholar
Zhao L. wang2018three_STATmap. 2022. Dataset Figshare. https://doi.org/10.6084/m9.figshare.19786456.v1.
Bhattacherjee A, Djekidel MN, Chen R, Chen W, Tuesta LM, Zhang Y. Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124952. 2019.
Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573(7772):61–8.
Google Scholar
Science AIfB. Mouse V1 and ALM SMART-seq. Datasets. Allen Brain Map. https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq. 2018.
Eng C-HLC, Long. NIH3T3_point_locations for RNA seqFISH+ experiments.Datasets. Zenodo. https://zenodo.org/records/2669683. 2019.
Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019;566(7745):490–5.
Google Scholar
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138–42.
Google Scholar
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Single-cell RNA-seq of mouse cerebral cortex. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60361. 2015.
Zhuang X. A molecularly defined and spatially resolved cell atlas of the mouse primary motor cortex. Datasets. Brain Knowledge Platform. https://knowledge.brain-map.org/data/L3GYGFMDJCG0GUEE3QG. 2021.
Yao Z, Liu H, Xie F, Fischer S, Adkins RS, Aldridge AI, et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature. 2021;598(7879):103–10.
Google Scholar
Science AIfB. Mouse cortical 10X v3 single-cell transcriptome dataset. Datasets. NEMO Archive. https://data.nemoarchive.org/biccn/lab/zeng/transcriptome/scell/10x_v3/mouse/processed/analysis/10X_cells_v3_AIBS/. 2020.
Choi JLJ, Ferdous S, Liang Q, Moffitt JR, Chen R. Spatial organization of the mouse retina at single cell resolution by MERFISH. 2023. Datasets Zenodo. https://doi.org/10.5281/zenodo.8144355.
Hoang TW, Jun; Boyd, Peter; Wang, Fei; Hyde, Daniel R.; Qian, Jun; Blackshaw, Seth. Comparative transcriptomic and epigenomic analysis identifies key regulators of injury response and neurogenic competence in retinal glia. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135406. 2020.
Pisco A. MERFISH mouse comparison study. Datasets. Figshare. https://figshare.com/projects/MERFISH_mouse_comparison_study/134213. 2022.
Moffitt JRB-M, Dhananjay; Eichhorn, Stephen W.; Vaughn, Eric; Shekhar, Karthik; Perez, Julio D.; Rubinstein, Nimrod D.; Hao, Junjie; Regev, Aviv; Dulac, Catherine; Zhuang, Xiaowei. Molecular, spatial and functional single-cell profiling of the hypothalamic preoptic region. Datasets. Dryad. https://doi.org/10.5061/dryad.8t8s248. 2018.
Zhuang XD, Catherine. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113576. 2018.
Lab M. A single-cell molecular map of mouse gastrulation and early organogenesis. Datasets. Marioni Lab Shiny Apps. https://crukci.shinyapps.io/mousegastrulation2018/. 2018.
Griffiths J LA. Overview of the MouseGastrulationData datasets. Datasets. Bioconductor. https://bioconductor.org/packages/devel/data/experiment/vignettes/MouseGastrulationData/inst/doc/MouseGastrulationData.html. 2022.
Zeng HH, Jiahao; Zhou, Haowen; Meilandt, William J.; Dejanovic, Borislav; Zhou, Yiming; Bohlen, Christopher J.; Lee, Seung-Hye; Ren, Jingyi; Liu, Albert; Tang, Zefang; Sheng, Hao; Liu, Jia; Sheng, Morgan; Wang, Xiao. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in an Alzheimer disease model. Datasets. Zenodo. https://zenodo.org/records/7332091. 2022.
Russell AJ, Weir JA, Nadaf NM, Shabet M, Kumar V, Kambhampati S, et al. Slide-tags snRNA-seq on human prefrontal cortex. Datasets. Single Cell Portal. https://singlecell.broadinstitute.org/single_cell/study/SCP2167/slide-tags-snrna-seq-on-human-prefrontal-cortex. 2023.
Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJ, Pflueger J, et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168408. 2022.
Technologies N. CosMx SMI Human Liver RNA FFPE Dataset. Datasets. NanoString. https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/human-liver-rna-ffpe-dataset/. 2022.
Shen Q, Dong K, Zhang SQ, Zhang S. High-precision cell-type mapping and annotation of single-cell spatial transcriptomics with STAMapper. GitHub. https://github.com/zhanglabtools/STAMapper. 2025.
Shen Q, Dong K, Zhang SQ, Zhang S. High-precision cell-type mapping and annotation of single-cell spatial transcriptomics with STAMapper. Zenodo. https://zenodo.org/records/17007394. 2025.