Roiz D, Pontifes PA, Jourdain F, Diagne C, Leroy B, Vaissiere AC, et al. The rising global economic costs of invasive Aedes mosquitoes and Aedes-borne diseases. Sci Total Environ. 2024;933:173054. https://doi.org/10.1016/j.scitotenv.2024.173054.
Google Scholar
Brasil: monitoramento dos casos de arboviroses no Brasil; 2025. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/aedes-aegypti/monitoramento-das-arboviroses.
Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L, et al. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis. 2019;13:e0006822. https://doi.org/10.1371/journal.pntd.0006822.
Google Scholar
WHO. Global vector control response 2017–2030. Geneva: World Health Organization; 2017. p. 51.
Bravo A, Likitvivatanavong S, Gill SS, Soberón M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol. 2011;41:423–31. https://doi.org/10.1016/j.ibmb.2011.02.006.
Google Scholar
Margalit J, Dean D. The story of Bacillus thuringiensis var. israelensis (B.t.i.). J Am Mosq Control Assoc. 1985;1:1–7.
Google Scholar
Bruhl CA, Despres L, Fror O, Patil CD, Poulin B, Tetreau G, et al. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Sci Total Environ. 2020;724:137800. https://doi.org/10.1016/j.scitotenv.2020.137800.
Google Scholar
Pardo-Lopez L, Soberon M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev. 2013;37:3–22. https://doi.org/10.1111/j.1574-6976.2012.00341.x.
Google Scholar
Soberón M, Fernández LE, Pérez C, Gill SS, Bravo A. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon. 2007;49:597–600. https://doi.org/10.1016/j.toxicon.2006.11.008.
Google Scholar
Jurat-Fuentes JL, Heckel DG, Ferre J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu Rev Entomol. 2021;66:121–40. https://doi.org/10.1146/annurev-ento-052620-073348.
Google Scholar
Likitvivatanavong S, Chen J, Evans AM, Bravo A, Soberón M, Gill SS. Multiple receptors as targets of Cry toxins in mosquitoes. J Agric Food Chem. 2011;59:2829–38. https://doi.org/10.1021/jf1036189.
Google Scholar
Lopez-Molina S, do Nascimento NA, Silva-Filha M, Guerrero A, Sanchez J, Pacheco S, et al. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti. PLoS Pathog. 2021;17:e1009199. https://doi.org/10.1371/journal.ppat.1009199.
Google Scholar
Pérez C, Fernandez LE, Sun J, Folch JL, Gill SS, Soberón M, et al. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci U S A. 2005;102:18303–8. https://doi.org/10.1073/pnas.0505494102.
Google Scholar
Pérez C, Muñoz-Garay C, Portugal LC, Sánchez J, Gill SS, Soberón M, et al. Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol. 2007;9:2931–7. https://doi.org/10.1111/j.1462-5822.2007.01007.x.
Google Scholar
Becker N, Ludwig M, Su T. Lack of resistance in Aedes vexans field populations after 36 years of Bacillus thuringiensis subsp. israelensis applications in the Upper Rhine Valley, Germany. J Am Mosq Control Assoc. 2018;34:154–7. https://doi.org/10.2987/17-6694.1.
Google Scholar
Guidi V, Patocchi N, Luthy P, Tonolla M. Distribution of Bacillus thuringiensis subsp. israelensis in soil of a Swiss wetland reserve after 22 years of mosquito control. Appl Environ Microbiol. 2011;77:3663–8. https://doi.org/10.1128/AEM.00132-11.
Google Scholar
Guillet P, Kurtak DC, Phillipon B, Meyer R. Use of Bacillus thuringiensis for onchorcercosis control in West Africa. In: de Barjac H, Sutherland D, editors. Bacterial control of mosquitoes and black-flies. 1st ed. New Brunswick: Rutgers University Press; 1990. p. 187–201.
Google Scholar
Mardini LB, Torres MA, da Silveira GL, Atz AM. Simulium spp. control program in Rio Grande do Sul, Brazil. Mem Inst Oswaldo Cruz. 2000;95:211–4.
Google Scholar
Cadavid-Restrepo G, Sahaza J, Orduz S. Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance. Mem Inst Oswaldo Cruz. 2012;107:74–9.
Google Scholar
Paris M, David JP, Despres L. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicology. 2011;20:1184–94. https://doi.org/10.1007/s10646-011-0663-8.
Google Scholar
Stalinski R, Laporte F, Tetreau G, Despres L. Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti. Infect Genet Evol. 2016;44:218–27. https://doi.org/10.1016/j.meegid.2016.07.009.
Google Scholar
Stalinski R, Tetreau G, Gaude T, Despres L. Pre-selecting resistance against individual Bti cry toxins facilitates the development of resistance to the Bti toxins cocktail. J Invertebr Pathol. 2014;119:50–3. https://doi.org/10.1016/j.jip.2014.04.002.
Google Scholar
Carvalho KDS, Crespo MM, Araujo AP, da Silva RS, de Melo-Santos MAV, de Oliveira CMF, et al. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasit Vectors. 2018;11:673. https://doi.org/10.1186/s13071-018-3246-1.
Google Scholar
Goldman IF, Arnold J, Carlton BC. Selection for resistance to Bacillus thuringiensis subspecies israelensis in field and laboratory populations of the mosquito Aedes aegypti. J Invertebr Pathol. 1986;47:317–24.
Google Scholar
Ioannou CS, Hadjichristodoulou C, Mouchtouri VA, Papadopoulos NT. Effects of selection to diflubenzuron and Bacillus thuringiensis var. israelensis on the overwintering successes of Aedes albopictus (Diptera: Culicidae). Insects. 2021; 12:822. https://doi.org/10.3390/insects12090822.
Google Scholar
Tetreau G, Stalinski R, Kersusan D, Veyrenc S, David JP, Reynaud S, et al. Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mosquito larvae after contact with leaf litter. Appl Environ Microbiol. 2012;78:5189–95. https://doi.org/10.1128/AEM.00903-12.
Google Scholar
Barbosa RMR, Melo-Santos MAV, Silveira JC Jr, Silva-Filha M, Souza WV, Oliveira CMF, et al. Infestation of an endemic arbovirus area by sympatric populations of Aedes aegypti and Aedes albopictus in Brazil. Mem Inst Oswaldo Cruz. 2020;115:e190437. https://doi.org/10.1590/0074-02760190437.
Google Scholar
Araujo AP, Araujo Diniz DF, Helvecio E, de Barros RA, de Oliveira CM, Ayres CF, et al. The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management. Parasit Vectors. 2013;6:297. https://doi.org/10.1186/1756-3305-6-297.
Google Scholar
Balaska S, Fotakis EA, Kioulos I, Grigoraki L, Mpellou S, Chaskopoulou A, et al. Bioassay and molecular monitoring of insecticide resistance status in Aedes albopictus populations from Greece, to support evidence-based vector control. Parasit Vectors. 2020;13:328. https://doi.org/10.1186/s13071-020-04204-0.
Google Scholar
Haidy Massa M, Ould Lemrabott MA, Gomez N, Ould Mohamed Salem Boukhary A, Briolant S. Insecticide resistance status of Aedes aegypti adults and larvae in Nouakchott, Mauritania. Insects. 2025; 16:288. https://doi.org/10.3390/insects16030288.
Google Scholar
Li Y, Xu J, Zhong D, Zhang H, Yang W, Zhou G, et al. Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors. 2018;11:4. https://doi.org/10.1186/s13071-017-2581-y.
Google Scholar
Marcombe S, Chonephetsarath S, Thammavong P, Brey PT. Alternative insecticides for larval control of the dengue vector Aedes aegypti in Lao PDR: insecticide resistance and semi-field trial study. Parasit Vectors. 2018;11:616. https://doi.org/10.1186/s13071-018-3187-8.
Google Scholar
Shimono T, Kanda S, Lamaningao P, Murakami Y, Darcy AW, Mishima N, et al. Phenotypic and haplotypic profiles of insecticide resistance in populations of Aedes aegypti larvae (Diptera: Culicidae) from central Lao PDR. Trop Med Health. 2021;49:32. https://doi.org/10.1186/s41182-021-00321-3.
Google Scholar
Wang Y, Cheng P, Jiao B, Song X, Wang H, Wang H, et al. Investigation of mosquito larval habitats and insecticide resistance in an area with a high incidence of mosquito-borne diseases in Jining, Shandong Province. PLoS ONE. 2020;15:e0229764. https://doi.org/10.1371/journal.pone.0229764.
Google Scholar
Yougang AP, Kamgang B, Tedjou AN, Wilson-Bahun TA, Njiokou F, Wondji CS. Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon. PLoS ONE. 2020;15:e0234572. https://doi.org/10.1371/journal.pone.0234572.
Google Scholar
Boyer S, Paris M, Jego S, Lemperiere G, Ravanel P. Influence of insecticide Bacillus thuringiensis subs. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biol Control. 2012;62:75–81.
Google Scholar
Boyer S, Tilquin M, Ravanel P. Differential sensitivity to Bacillus thuringiensis var. israelensis and temephos in field mosquito populations of Ochlerotatus cataphylla (Diptera: Culicidae): toward resistance? Environ Toxicol Chem. 2007;26:157–62.
Google Scholar
Paul A, Harrington LC, Zhang L, Scott JG. Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc. 2005;21:305–9.
Google Scholar
Vereecken S, Vanslembrouck A, Kramer IM, Muller R. Phenotypic insecticide resistance status of the Culex pipiens complex: a European perspective. Parasit Vectors. 2022;15:423. https://doi.org/10.1186/s13071-022-05542-x.
Google Scholar
Carvalho KS, Rezende TMT, Romao TP, Rezende AM, Chinas M, Guedes DRD, et al. Aedes aegypti strain subjected to long-term exposure to Bacillus thuringiensis svar. israelensis larvicides displays an altered transcriptional response to Zika virus infection. Viruses. 2022; 15:72. https://doi.org/10.3390/v15010072.
Google Scholar
Carvalho KDS, Guedes DRD, Crespo MM, de Melo-Santos MAV, Silva-Filha M. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors. 2021;14:379. https://doi.org/10.1186/s13071-021-04880-6.
Google Scholar
Melo-Santos MA, Araújo AP, Rios EM, Regis L. Long lasting persistence of Bacillus thuringiensis serovar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biol Control. 2009;49:186–91.
Google Scholar
de Barros Moreira Beltrão H, Silva-Filha MH. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiol Lett. 2007;266:163–9. https://doi.org/10.1111/j.1574-6968.2006.00527.x.
Google Scholar
WHO. WHO Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization. In: WHO/CDS/WHOPES/GCDPP/200513. Edited by (NTD) CoNTD: WHO/CDS/WHOPES/GCDPP/2005.13; 2005. p. 41.
Chen J, Aimanova KG, Pan S, Gill SS. Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochem Mol Biol. 2009;39:688–96. https://doi.org/10.1016/j.ibmb.2009.08.003.
Google Scholar
Chen J, Likitvivatanavong S, Aimanova KG, Gill SS. A 104 kDa Aedes aegypti aminopeptidase N is a putative receptor for the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Insect Biochem Mol Biol. 2013;43:1201–8. https://doi.org/10.1016/j.ibmb.2013.09.007.
Google Scholar
Lee SB, Aimanova KG, Gill SS. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti. Insect Biochem Mol Biol. 2014;54:112–21. https://doi.org/10.1016/j.ibmb.2014.09.004.
Google Scholar
Lee SB, Chen J, Aimanova KG, Gill SS. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti. Peptides. 2015;68:140–7. https://doi.org/10.1016/j.peptides.2014.07.015.
Google Scholar
Tetreau G, Bayyareddy K, Jones CM, Stalinski R, Riaz MA, Paris M, et al. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. BMC Genomics. 2012;13:248. https://doi.org/10.1186/1471-2164-13-248.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.
Google Scholar
Van Handel E. Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc. 1985;1:302–4.
Google Scholar
Yamada T, Habara O, Kubo H, Nishimura T. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development. 2018; 145:dev158865. https://doi.org/10.1242/dev.158865.
Google Scholar
Guidi V, Lehner A, Luthy P, Tonolla M. Dynamics of Bacillus thuringiensis var. israelensis and Lysinibacillus sphaericus spores in urban catch basins after simultaneous application against mosquito larvae. PLoS ONE. 2013;8:e55658. https://doi.org/10.1371/journal.pone.0055658.
Google Scholar
Stalinski R, Laporte F, Despres L, Tetreau G. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins. Environ Microbiol. 2016;18:1022–36. https://doi.org/10.1111/1462-2920.13186.
Google Scholar
Pacheco S, Gallegos AS, Pelaez-Aguilar AE, Sanchez J, Gomez I, Soberon M, et al. CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti. PLoS Negl Trop Dis. 2024;18:e0012256. https://doi.org/10.1371/journal.pntd.0012256.
Google Scholar
Wang J, Yang X, He H, Chen J, Liu Y, Huang W, et al. Knockout of two Cry-binding aminopeptidase N isoforms does not change susceptibility of Aedes aegypti larvae to Bacillus thuringiensis subsp. israelensis Cry4Ba and Cry11Aa toxins. Insects. 2021; 12:223. https://doi.org/10.3390/insects12030223.
Google Scholar
Flores-Escobar B, Rodriguez-Magadan H, Bravo A, Soberon M, Gomez I. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Appl Environ Microbiol. 2013;79:4543–50.
Google Scholar
Vial T, Marti G, Misse D, Pompon J. Lipid interactions between flaviviruses and mosquito vectors. Front Physiol. 2021;12:763195. https://doi.org/10.3389/fphys.2021.763195.
Google Scholar
Aldridge RL, Alto BW, Roxanne Connelly C, Okech B, Siegfried B, Eastmond BH, et al. Does prior exposure to larvicides influence dengue virus susceptibility in Aedes aegypti (Diptera: Culicidae)? J Med Entomol. 2024;61:166–74. https://doi.org/10.1093/jme/tjad137.
Google Scholar
Alto BW, Lord CC. Transstadial effects of Bti on traits of Aedes aegypti and infection with Dengue virus. PLoS Negl Trop Dis. 2016;10:e0004370. https://doi.org/10.1371/journal.pntd.0004370.
Google Scholar
Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M, et al. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci. 2019;286:1894:20182273. https://doi.org/10.1098/rspb.2018.2273.
Google Scholar
Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6:146. https://doi.org/10.1186/1756-3305-6-146.
Google Scholar
Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and their microbiota: a review. Front Microbiol. 2019;10:2036. https://doi.org/10.3389/fmicb.2019.02036.
Google Scholar
Wang J, Gao L, Aksoy S. Microbiota in disease-transmitting vectors. Nat Rev Microbiol. 2023;21:604–18. https://doi.org/10.1038/s41579-023-00901-6.
Google Scholar
Dacey DP, Chain FJJ. The challenges of microbial control of mosquito-borne diseases due to the gut microbiome. Front Genet. 2020;11:504354. https://doi.org/10.3389/fgene.2020.504354.
Google Scholar
Moltini-Conclois I, Stalinski R, Tetreau G, Despres L, Lambrechts L. Larval exposure to the bacterial insecticide Bti enhances dengue virus susceptibility of adult Aedes aegypti mosquitoes. Insects. 2018; 9:193. https://doi.org/10.3390/insects9040193.
Google Scholar
Dusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: advances and challenges. PLoS Negl Trop Dis. 2019;13:e0007615. https://doi.org/10.1371/journal.pntd.0007615.
Google Scholar
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625. https://doi.org/10.1371/journal.pntd.0005625.
Google Scholar
Grigoraki L, Puggioli A, Mavridis K, Douris V, Montanari M, Bellini R, et al. Striking diflubenzuron resistance in Culex pipiens, the prime vector of West Nile Virus. Sci Rep. 2017;7:11699. https://doi.org/10.1038/s41598-017-12103-1.
Google Scholar
Su T. Prevention of resistance to spinosad by a combination of spinosad and Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus (Diptera: Culicidae). Pest Manag Sci. 2024;80:6585–9. https://doi.org/10.1002/ps.8397.
Google Scholar
Su T, Cheng ML. Resistance development in Culex quinquefasciatus to spinosad: a preliminary report. J Am Mosq Control Assoc. 2012;28:263–7.
Google Scholar
Anderson JF, Ferrandino FJ, Dingman DW, Main AJ, Andreadis TG, Becnel JJ. Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, [corrected] and spinosad. J Am Mosq Control Assoc. 2011;27:45–55. https://doi.org/10.2987/10-6079.1.
Google Scholar
Dritz DA, Lawler SP, Evkhanian C, Graham P, Baracosa V, Dula G. Control of mosquito larvae in seasonal wetlands on a wildlife refuge using VectoMax CG. J Am Mosq Control Assoc. 2011;27:398–403.
Google Scholar
Santos EM, Regis LN, Silva-Filha MHNL, Barbosa RMB, Gomes TCS, Oliveira CMF. The effectiveness of a combined bacterial larvicide for mosquito control in an endemic urban area in Brazil. Biol Control. 2018;121:190–8.
Google Scholar
Nascimento NA, Torres-Quintero MC, Molina SL, Pacheco S, Romao TP, Pereira-Neves A, et al. Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize Lysinibacillus sphaericus binary toxin (Bin) against Bin-resistant and refractory mosquito species. Appl Environ Microbiol. 2020; 86: e02770-19. https://doi.org/10.1128/AEM.02770-19.
Google Scholar