Unveiling the microbial shift: the impact of group B Streptococcus on vaginal microbiota and inflammation in late pregnancy | BMC Microbiology

  • Jia Q, Yu F, Ding Y, Cao Q, Wei H, Ma C. Investigation and analysis of 49343 case women’s vaginal microecology. Iran J Public Health. 2022;51(7):1611–7. https://doi.org/10.18502/ijph.v51i7.10095.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shazadi K, Arshad N. Evaluation of inhibitory and probiotic properties of lactic acid bacteria isolated from vaginal microflora. Folia Microbiol (Praha). 2022;67(3):427–45. https://doi.org/10.1007/s12223-021-00942-5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen X, Lu Y, Chen T, Li R. The female vaginal Microbiome in health and bacterial vaginosis. Front Cell Infect Microbiol. 2021;11:631972. https://doi.org/10.3389/fcimb.2021.631972.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar P, Magon N. Hormones in pregnancy. Nigerian Med J. 2012;53(4):179–83. https://doi.org/10.4103/0300-1652.107549.

    Article 

    Google Scholar 

  • Abo S, Smith D, Stadt M, Layton A. Modelling female physiology from head to toe: impact of sex hormones, menstrual cycle, and pregnancy. J Theor Biol. 2022;540:111074. https://doi.org/10.1016/j.jtbi.2022.111074.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rahman N, Mian MF, Nazli A, Kaushic C. Human vaginal microbiota colonization is regulated by female sex hormones in a mouse model. Front Cell Infect Microbiol. 2023;13:1307451. https://doi.org/10.3389/FCIMB.2023.1307451.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen X, Cao S, Fu X, Ni Y, Huang B, Wu J, et al. The risk factors for group B Streptococcus colonization during pregnancy and influences of intrapartum antibiotic prophylaxis on maternal and neonatal outcomes. BMC Pregnancy Childbirth. 2023;23(1):207. https://doi.org/10.1186/s12884-023-05478-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonçalves BP, Procter SR, Paul P, Chandna J, Lewin A, Seedat F, et al. Group B Streptococcus infection during pregnancy and infancy: estimates of regional and global burden. Lancet Glob Health. 2022;10(6):e807–19. https://doi.org/10.1016/S2214-109X(22)00093-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee KW, Yap SF, Murdan S, Zainudin Z, Abdul Hamid H, Emamjomeh M, et al. Maternal and neonatal group B Streptococcus colonisation: A systematic review and the meta-analysis of matched-pair studies. Acta Paediatr. 2024;113(5):892–911. https://doi.org/10.1111/apa.17152.

    Article 
    PubMed 

    Google Scholar 

  • Liang Z, Nie S-P. Colonization rate, serotype and biofilm formation ability of group B Streptococci in vagina and rectum of 2141 pregnant women. Shandong Med J. 2023;63(26):62–4. https://doi.org/10.3969/j.issn.1002-266X.2023.26.015. (in Chinese).

    Article 

    Google Scholar 

  • Delara M, Vadlamudi NK, Sadarangani M. Strategies to prevent early and Late-Onset group B Streptococcal infection via interventions in pregnancy. Pathogens. 2023;12(2):229. https://doi.org/10.3390/pathogens12020229.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Umber FS-RT, Shao-Mei LX-PY. Prevention of perinatal group B Streptococcus infections. Maternal-Fetal Med. 2020;2(02):100–9. https://doi.org/10.1097/FM9.0000000000000041.

    Article 

    Google Scholar 

  • Deng J-H, Yao K-H, Hu H-L, Yu S-J, Gao W, Fu L-B, et al. Detection of group B Streptococcus in the cases died of neonatal pneumonia. Chin J Pediatr. 2006;44(11):850–4. https://doi.org/10.3760/cma.j.issn.0578-1310.2006.11.116. (in Chinese).

    Article 

    Google Scholar 

  • Altoparlak U, Kadanali A, Kadanali S. Genital flora in pregnancy and its association with group B Streptococcal colonization. Int J Gynaecol Obstet. 2004;87(3):245–6. https://doi.org/10.1016/j.ijgo.2004.08.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kubota T, Nojima M, Itoh SV. Bacterial flora of pregnant women colonized with group B Streptococcus. J Infect Chemother. 2002;8(4):326–30. https://doi.org/10.1007/s10156-002-0190-x.

    Article 
    PubMed 

    Google Scholar 

  • Brzychczy-Włoch M, Pabian W, Majewska E, Zuk MG, Kielbik J, Gosiewski T, et al. Dynamics of colonization with group B Streptococci in relation to normal flora in women during subsequent trimesters of pregnancy. New Microbiol. 2014;37(3):307–19. https://europepmc.org/article/med/25180845

    PubMed 

    Google Scholar 

  • Rick AM, Aguilar A, Cortes R, Gordillo R, Melgar M, Samayoa-Reyes G, et al. Group B Streptococci colonization in pregnant Guatemalan women: prevalence, risk factors, and vaginal Microbiome. Open Forum Infect Dis. 2017;4(1):ofx020. https://doi.org/10.1093/ofid/ofx020.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu F, Tang YT, Hu ZQ, Lin XN. Analysis of the vaginal microecological status and genital tract infection characteristics of 751 pregnant women. Med Sci Monit. 2018;24:5338–45. https://doi.org/10.12659/MSM.909051.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shabayek S, Abdellah AM, Salah M, Ramadan M, Fahmy N. Alterations of the vaginal Microbiome in healthy pregnant women positive for group B Streptococcus colonization during the third trimester. BMC Microbiol. 2022;22(1):313. https://doi.org/10.1186/s12866-022-02730-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Society of Perinatal Medicine, MedicalAssociation C, Subgroup O, Society of Obstetrics and Gynecology, Chinese Medical Association. Chinese experts consensus on prevention of perinatal group B Streptococcal disease[J]. Chin J Perinat Med. 2021;24(8):561–6. https://doi.org/10.3760/cma.j.cn113903-20210716-00638.

    Article 

    Google Scholar 

  • Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B Streptococcal Disease–Revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59(RR–10):1–36. https://www.cdc.gov/Mmwr/preview/mmwrhtml/rr5910a1.htm.

    PubMed 

    Google Scholar 

  • Chen J, Li W, Zhang J, Qi W, Li Y, Chen S, et al. Prevalence of antibiotic resistance genes in drinking water and biofilms: the correlation with the microbial community and opportunistic pathogens. Chemosphere. 2020;259:127483. https://doi.org/10.1016/j.chemosphere.2020.127483.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an Ultra-Fast All-in-One FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. https://doi.org/10.1093/bioinformatics/bty560.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63. https://doi.org/10.1093/bioinformatics/btr507.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Z, Zhao W, Jiang Y, Wen Y, Li M, Liu L, et al. New insights into biologic interpretation of bioinformatic pipelines for fish eDNA metabarcoding: A case study in Pearl river estuary. J Environ Manage. 2024;368:122136. https://doi.org/10.1016/j.jenvman.2024.122136.

    Article 
    PubMed 

    Google Scholar 

  • Li Z, Dong Y, Chen S, Jia X, Jiang X, Che L, et al. Organic selenium increased gilts antioxidant capacity, immune function, and changed intestinal microbiota. Front Microbiol. 2021;12:723190. https://doi.org/10.3389/fmicb.2021.723190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han C, Shi C, Liu L, Han J, Yang Q, Wang Y, et al. Majorbio cloud 2024: update Single-Cell and multiomics workflows. Imeta. 2024;3(4):e217. https://doi.org/10.1002/imt2.217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41. https://doi.org/10.1128/AEM.01541-09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khleborodova A, Gamboa-Tuz SD, Ramos M, Segata N, Waldron L, Oh S. Lefser: implementation of metagenomic biomarker discovery tool, LEfSe. R Bioinf. 2024;40(12):btae707. https://doi.org/10.1093/bioinformatics/btae707.

    Article 
    CAS 

    Google Scholar 

  • Gao X, Xu J, Xu M, Han P, Sun J, Liang R, et al. Nomogram and web calculator based on Lasso-Logistic regression for predicting persistent organ failure in acute pancreatitis patients. J Inflamm Res. 2024;17:823–36. https://doi.org/10.2147/JIR.S445929.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding W, Ma Y, Ma C, Malone DC, Ma A, Tang W, et al. The lifetime cost Estimation of human Papillomavirus-Related diseases in china: A modeling study. J Transl Int Med. 2021;9(3):200–11. https://doi.org/10.2478/jtim-2021-0039.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang Q, Fang Q, Hu Z. A P4 medicine perspective of gut microbiota and prediabetes: systems analysis and personalized intervention. J Transl Int Med. 2020;8(3):119–30. https://doi.org/10.2478/jtim-2020-0020.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao Q, Zhang XF, Mi X, Jin F, Sun HM, Wang QX. Influence of group B Streptococcus and vaginal cleanliness on the vaginal Microbiome of pregnant women. World J Clin Cases. 2020;10(34):12578–86. https://doi.org/10.12998/wjcc.v10.i34.12578.

    Article 

    Google Scholar 

  • Li K-C, Zhou N, Zhou Y-Y. Analysis on vaginal microenvironment after group B Streptococcus infection in late pregnant women based on bacterial 16S rDNA sequencing technique. Lab Med Clin. 2019;16(21):3073–6. https://doi.org/10.3969/j.issn.1672-9455.2019.21.001. (in Chinese).

    Article 

    Google Scholar 

  • Ceccarani C, Foschi C, Parolin C, D’Antuono A, Gaspari V, Consolandi C, et al. Diversity of vaginal Microbiome and metabolome during genital infections. Sci Rep. 2019;9(1):14095. https://doi.org/10.1038/s41598-019-50410-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parolin C, Croatti V, Laghi L, Giordani B, Tondi MR, De Gregorio PR, et al. Lactobacillus biofilms influence Anti-Candida activity. Front Microbiol. 2021;12:750368. https://doi.org/10.3389/fmicb.2021.750368.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang Y, Li N, Gao Y, Xu F, Chen H, Zhang C, et al. The activation impact of Lactobacillus-Derived extracellular vesicles on Lipopolysaccharide-Induced microglial cell. BMC Microbiol. 2024;24(1):70. https://doi.org/10.1186/s12866-024-03217-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maidment TI, Pelzer ES, Borg DJ, Cheung E, Begun J, Nitert MD, et al. Group B Streptococcus vaginal colonisation throughout pregnancy is associated with decreased Lactobacillus crispatus and increased Lactobacillus iners abundance in the vaginal microbial community. Front Cell Infect Microbiol. 2024;14:1435745. https://doi.org/10.3389/fcimb.2024.1435745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho M, Chang YY, Chang WC, Lin HC, Wang MH, Lin WC, et al. Oral Lactobacillus rhamnosus gr-1 and Lactobacillus reuteri rc-14 to reduce group b Streptococcus colonization in pregnant women: arandomized controlled trial. Taiwan J Obstet Gynecol. 2016;55(4):515–8. https://doi.org/10.1016/j.tjog.2016.06.003.

    Article 
    PubMed 

    Google Scholar 

  • Gilbert NM, Foster LR, Cao B, Yin Y, Mysorekar IU, Lewis AL. Gardnerella vaginalis promotes group B Streptococcus vaginal colonization, enabling ascending uteroplacental infection in pregnant mice. Am J Obstet Gynecol. 2021;224(5):530. https://doi.org/10.1016/j.ajog.2020.11.032.

    Article 
    CAS 

    Google Scholar 

  • Mu Y, Hu A, Kan H, Li Y, He Y, Fan W, et al. Preterm prelabor rupture of membranes linked to vaginal bacteriome of pregnant females in the early second trimester: a case-cohort design. Reproductive Sci. 2023;30(7):2324–35. https://doi.org/10.1007/s43032-022-01153-0.

    Article 
    CAS 

    Google Scholar 

  • Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal Microbiome of Reproductive-Age women. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4680–7. https://doi.org/10.1073/pnas.1002611107.

    Article 
    PubMed 

    Google Scholar 

  • Zhao F, Hu X, Ying C. Advances in research on the relationship between vaginal microbiota and adverse pregnancy outcomes and gynecological diseases. Microorganisms. 2023;11(4):991. https://doi.org/10.3390/microorganisms11040991.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun S, Serrano MG, Fettweis JM, Basta P, Rosen E, Ludwig K, et al. Race, the vaginal microbiome, and spontaneous preterm birth. Msystems. 2022;7(3):e00017–22. https://doi.org/10.1128/msystems.00017-22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Husain SM, Wilks M, Mupita M, Reddy SP, Hennessy EM, Macfarlane AJ, et al. Diversity and stability of cultured vaginal lactobacilli in pregnant women from a multi-ethnic urban UK population. J Appl Microbiol. 2014;117(1):258–65. https://doi.org/10.1111/jam.12506.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meanwatthana J, Majam T. Interleukin-6 antagonists: lessons from cytokine release syndrome to the therapeutic application in severe COVID-19 infection. J Pharm Pract. 2022;35(5):752–61. https://doi.org/10.1177/08971900211000691.

    Article 
    PubMed 

    Google Scholar 

  • Milenkovic M, Hadzibegovic A, Kovac M, Jovanovic B, Stanisavljevic J, Djikic M, et al. D-Dimer, CRP, PCT, and IL-6 levels at admission to ICU can predict In-Hospital mortality in patients with COVID-19 pneumonia. Oxid Med Cell Longev. 2022;2022:8997709. https://doi.org/10.1155/2022/8997709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong X, Chen X, Xue M, Zhang Y. Changes in serum inflammatory factors in group B Streptococcal infection and their predictive value for premature rupture of membranes complicated by chorioamnionitis. Biomark Med. 2024;18(7):301–9. https://doi.org/10.2217/bmm-2023-0588.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song Y, Dan K, Yao Z, Yang X, Chen B, Hao F. Altered gut microbiota in H1-Antihistamine-Resistant chronic spontaneous urticaria associates with systemic inflammation. Front Cell Infect Microbiol. 2022;12:831489. https://doi.org/10.3389/fcimb.2022.831489.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee CS, Jang ER, Kim YJ, Lee MS, Seo SJ, Lee MW. Hirsutenone inhibits lipopolysaccharide-activated NF-κB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation. Int Immunopharmacol. 2010;10(4):520–5. https://doi.org/10.1016/j.intimp.2010.01.015.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glick VJ, Webber CA, Simmons LE, Martin MC, Ahmad M, Kim CH, et al. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe. 2024;32(11):1897–909. https://doi.org/10.1016/j.chom.2024.09.014.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lev-Sagie A, Goldman-Wohl D, Cohen Y, Dori-Bachash M, Leshem A, Mor U, et al. Vaginal Microbiome transplantation in women with intractable bacterial vaginosis. Nat Med. 2019;25(10):1500–4. https://doi.org/10.1038/s41591-019-0600-6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading