Jia Q, Yu F, Ding Y, Cao Q, Wei H, Ma C. Investigation and analysis of 49343 case women’s vaginal microecology. Iran J Public Health. 2022;51(7):1611–7. https://doi.org/10.18502/ijph.v51i7.10095.
Google Scholar
Shazadi K, Arshad N. Evaluation of inhibitory and probiotic properties of lactic acid bacteria isolated from vaginal microflora. Folia Microbiol (Praha). 2022;67(3):427–45. https://doi.org/10.1007/s12223-021-00942-5.
Google Scholar
Chen X, Lu Y, Chen T, Li R. The female vaginal Microbiome in health and bacterial vaginosis. Front Cell Infect Microbiol. 2021;11:631972. https://doi.org/10.3389/fcimb.2021.631972.
Google Scholar
Kumar P, Magon N. Hormones in pregnancy. Nigerian Med J. 2012;53(4):179–83. https://doi.org/10.4103/0300-1652.107549.
Google Scholar
Abo S, Smith D, Stadt M, Layton A. Modelling female physiology from head to toe: impact of sex hormones, menstrual cycle, and pregnancy. J Theor Biol. 2022;540:111074. https://doi.org/10.1016/j.jtbi.2022.111074.
Google Scholar
Rahman N, Mian MF, Nazli A, Kaushic C. Human vaginal microbiota colonization is regulated by female sex hormones in a mouse model. Front Cell Infect Microbiol. 2023;13:1307451. https://doi.org/10.3389/FCIMB.2023.1307451.
Google Scholar
Chen X, Cao S, Fu X, Ni Y, Huang B, Wu J, et al. The risk factors for group B Streptococcus colonization during pregnancy and influences of intrapartum antibiotic prophylaxis on maternal and neonatal outcomes. BMC Pregnancy Childbirth. 2023;23(1):207. https://doi.org/10.1186/s12884-023-05478-9.
Google Scholar
Gonçalves BP, Procter SR, Paul P, Chandna J, Lewin A, Seedat F, et al. Group B Streptococcus infection during pregnancy and infancy: estimates of regional and global burden. Lancet Glob Health. 2022;10(6):e807–19. https://doi.org/10.1016/S2214-109X(22)00093-6.
Google Scholar
Lee KW, Yap SF, Murdan S, Zainudin Z, Abdul Hamid H, Emamjomeh M, et al. Maternal and neonatal group B Streptococcus colonisation: A systematic review and the meta-analysis of matched-pair studies. Acta Paediatr. 2024;113(5):892–911. https://doi.org/10.1111/apa.17152.
Google Scholar
Liang Z, Nie S-P. Colonization rate, serotype and biofilm formation ability of group B Streptococci in vagina and rectum of 2141 pregnant women. Shandong Med J. 2023;63(26):62–4. https://doi.org/10.3969/j.issn.1002-266X.2023.26.015. (in Chinese).
Google Scholar
Delara M, Vadlamudi NK, Sadarangani M. Strategies to prevent early and Late-Onset group B Streptococcal infection via interventions in pregnancy. Pathogens. 2023;12(2):229. https://doi.org/10.3390/pathogens12020229.
Google Scholar
Umber FS-RT, Shao-Mei LX-PY. Prevention of perinatal group B Streptococcus infections. Maternal-Fetal Med. 2020;2(02):100–9. https://doi.org/10.1097/FM9.0000000000000041.
Google Scholar
Deng J-H, Yao K-H, Hu H-L, Yu S-J, Gao W, Fu L-B, et al. Detection of group B Streptococcus in the cases died of neonatal pneumonia. Chin J Pediatr. 2006;44(11):850–4. https://doi.org/10.3760/cma.j.issn.0578-1310.2006.11.116. (in Chinese).
Google Scholar
Altoparlak U, Kadanali A, Kadanali S. Genital flora in pregnancy and its association with group B Streptococcal colonization. Int J Gynaecol Obstet. 2004;87(3):245–6. https://doi.org/10.1016/j.ijgo.2004.08.006.
Google Scholar
Kubota T, Nojima M, Itoh SV. Bacterial flora of pregnant women colonized with group B Streptococcus. J Infect Chemother. 2002;8(4):326–30. https://doi.org/10.1007/s10156-002-0190-x.
Google Scholar
Brzychczy-Włoch M, Pabian W, Majewska E, Zuk MG, Kielbik J, Gosiewski T, et al. Dynamics of colonization with group B Streptococci in relation to normal flora in women during subsequent trimesters of pregnancy. New Microbiol. 2014;37(3):307–19. https://europepmc.org/article/med/25180845
Google Scholar
Rick AM, Aguilar A, Cortes R, Gordillo R, Melgar M, Samayoa-Reyes G, et al. Group B Streptococci colonization in pregnant Guatemalan women: prevalence, risk factors, and vaginal Microbiome. Open Forum Infect Dis. 2017;4(1):ofx020. https://doi.org/10.1093/ofid/ofx020.
Google Scholar
Yu F, Tang YT, Hu ZQ, Lin XN. Analysis of the vaginal microecological status and genital tract infection characteristics of 751 pregnant women. Med Sci Monit. 2018;24:5338–45. https://doi.org/10.12659/MSM.909051.
Google Scholar
Shabayek S, Abdellah AM, Salah M, Ramadan M, Fahmy N. Alterations of the vaginal Microbiome in healthy pregnant women positive for group B Streptococcus colonization during the third trimester. BMC Microbiol. 2022;22(1):313. https://doi.org/10.1186/s12866-022-02730-8.
Google Scholar
Society of Perinatal Medicine, MedicalAssociation C, Subgroup O, Society of Obstetrics and Gynecology, Chinese Medical Association. Chinese experts consensus on prevention of perinatal group B Streptococcal disease[J]. Chin J Perinat Med. 2021;24(8):561–6. https://doi.org/10.3760/cma.j.cn113903-20210716-00638.
Google Scholar
Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B Streptococcal Disease–Revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59(RR–10):1–36. https://www.cdc.gov/Mmwr/preview/mmwrhtml/rr5910a1.htm.
Google Scholar
Chen J, Li W, Zhang J, Qi W, Li Y, Chen S, et al. Prevalence of antibiotic resistance genes in drinking water and biofilms: the correlation with the microbial community and opportunistic pathogens. Chemosphere. 2020;259:127483. https://doi.org/10.1016/j.chemosphere.2020.127483.
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an Ultra-Fast All-in-One FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. https://doi.org/10.1093/bioinformatics/bty560.
Google Scholar
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63. https://doi.org/10.1093/bioinformatics/btr507.
Google Scholar
Li Z, Zhao W, Jiang Y, Wen Y, Li M, Liu L, et al. New insights into biologic interpretation of bioinformatic pipelines for fish eDNA metabarcoding: A case study in Pearl river estuary. J Environ Manage. 2024;368:122136. https://doi.org/10.1016/j.jenvman.2024.122136.
Google Scholar
Li Z, Dong Y, Chen S, Jia X, Jiang X, Che L, et al. Organic selenium increased gilts antioxidant capacity, immune function, and changed intestinal microbiota. Front Microbiol. 2021;12:723190. https://doi.org/10.3389/fmicb.2021.723190.
Google Scholar
Han C, Shi C, Liu L, Han J, Yang Q, Wang Y, et al. Majorbio cloud 2024: update Single-Cell and multiomics workflows. Imeta. 2024;3(4):e217. https://doi.org/10.1002/imt2.217.
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41. https://doi.org/10.1128/AEM.01541-09.
Google Scholar
Khleborodova A, Gamboa-Tuz SD, Ramos M, Segata N, Waldron L, Oh S. Lefser: implementation of metagenomic biomarker discovery tool, LEfSe. R Bioinf. 2024;40(12):btae707. https://doi.org/10.1093/bioinformatics/btae707.
Google Scholar
Gao X, Xu J, Xu M, Han P, Sun J, Liang R, et al. Nomogram and web calculator based on Lasso-Logistic regression for predicting persistent organ failure in acute pancreatitis patients. J Inflamm Res. 2024;17:823–36. https://doi.org/10.2147/JIR.S445929.
Google Scholar
Ding W, Ma Y, Ma C, Malone DC, Ma A, Tang W, et al. The lifetime cost Estimation of human Papillomavirus-Related diseases in china: A modeling study. J Transl Int Med. 2021;9(3):200–11. https://doi.org/10.2478/jtim-2021-0039.
Google Scholar
Huang Q, Fang Q, Hu Z. A P4 medicine perspective of gut microbiota and prediabetes: systems analysis and personalized intervention. J Transl Int Med. 2020;8(3):119–30. https://doi.org/10.2478/jtim-2020-0020.
Google Scholar
Liao Q, Zhang XF, Mi X, Jin F, Sun HM, Wang QX. Influence of group B Streptococcus and vaginal cleanliness on the vaginal Microbiome of pregnant women. World J Clin Cases. 2020;10(34):12578–86. https://doi.org/10.12998/wjcc.v10.i34.12578.
Google Scholar
Li K-C, Zhou N, Zhou Y-Y. Analysis on vaginal microenvironment after group B Streptococcus infection in late pregnant women based on bacterial 16S rDNA sequencing technique. Lab Med Clin. 2019;16(21):3073–6. https://doi.org/10.3969/j.issn.1672-9455.2019.21.001. (in Chinese).
Google Scholar
Ceccarani C, Foschi C, Parolin C, D’Antuono A, Gaspari V, Consolandi C, et al. Diversity of vaginal Microbiome and metabolome during genital infections. Sci Rep. 2019;9(1):14095. https://doi.org/10.1038/s41598-019-50410-x.
Google Scholar
Parolin C, Croatti V, Laghi L, Giordani B, Tondi MR, De Gregorio PR, et al. Lactobacillus biofilms influence Anti-Candida activity. Front Microbiol. 2021;12:750368. https://doi.org/10.3389/fmicb.2021.750368.
Google Scholar
Yang Y, Li N, Gao Y, Xu F, Chen H, Zhang C, et al. The activation impact of Lactobacillus-Derived extracellular vesicles on Lipopolysaccharide-Induced microglial cell. BMC Microbiol. 2024;24(1):70. https://doi.org/10.1186/s12866-024-03217-4.
Google Scholar
Maidment TI, Pelzer ES, Borg DJ, Cheung E, Begun J, Nitert MD, et al. Group B Streptococcus vaginal colonisation throughout pregnancy is associated with decreased Lactobacillus crispatus and increased Lactobacillus iners abundance in the vaginal microbial community. Front Cell Infect Microbiol. 2024;14:1435745. https://doi.org/10.3389/fcimb.2024.1435745.
Google Scholar
Ho M, Chang YY, Chang WC, Lin HC, Wang MH, Lin WC, et al. Oral Lactobacillus rhamnosus gr-1 and Lactobacillus reuteri rc-14 to reduce group b Streptococcus colonization in pregnant women: arandomized controlled trial. Taiwan J Obstet Gynecol. 2016;55(4):515–8. https://doi.org/10.1016/j.tjog.2016.06.003.
Google Scholar
Gilbert NM, Foster LR, Cao B, Yin Y, Mysorekar IU, Lewis AL. Gardnerella vaginalis promotes group B Streptococcus vaginal colonization, enabling ascending uteroplacental infection in pregnant mice. Am J Obstet Gynecol. 2021;224(5):530. https://doi.org/10.1016/j.ajog.2020.11.032.
Google Scholar
Mu Y, Hu A, Kan H, Li Y, He Y, Fan W, et al. Preterm prelabor rupture of membranes linked to vaginal bacteriome of pregnant females in the early second trimester: a case-cohort design. Reproductive Sci. 2023;30(7):2324–35. https://doi.org/10.1007/s43032-022-01153-0.
Google Scholar
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal Microbiome of Reproductive-Age women. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4680–7. https://doi.org/10.1073/pnas.1002611107.
Google Scholar
Zhao F, Hu X, Ying C. Advances in research on the relationship between vaginal microbiota and adverse pregnancy outcomes and gynecological diseases. Microorganisms. 2023;11(4):991. https://doi.org/10.3390/microorganisms11040991.
Google Scholar
Sun S, Serrano MG, Fettweis JM, Basta P, Rosen E, Ludwig K, et al. Race, the vaginal microbiome, and spontaneous preterm birth. Msystems. 2022;7(3):e00017–22. https://doi.org/10.1128/msystems.00017-22.
Google Scholar
Husain SM, Wilks M, Mupita M, Reddy SP, Hennessy EM, Macfarlane AJ, et al. Diversity and stability of cultured vaginal lactobacilli in pregnant women from a multi-ethnic urban UK population. J Appl Microbiol. 2014;117(1):258–65. https://doi.org/10.1111/jam.12506.
Google Scholar
Meanwatthana J, Majam T. Interleukin-6 antagonists: lessons from cytokine release syndrome to the therapeutic application in severe COVID-19 infection. J Pharm Pract. 2022;35(5):752–61. https://doi.org/10.1177/08971900211000691.
Google Scholar
Milenkovic M, Hadzibegovic A, Kovac M, Jovanovic B, Stanisavljevic J, Djikic M, et al. D-Dimer, CRP, PCT, and IL-6 levels at admission to ICU can predict In-Hospital mortality in patients with COVID-19 pneumonia. Oxid Med Cell Longev. 2022;2022:8997709. https://doi.org/10.1155/2022/8997709.
Google Scholar
Dong X, Chen X, Xue M, Zhang Y. Changes in serum inflammatory factors in group B Streptococcal infection and their predictive value for premature rupture of membranes complicated by chorioamnionitis. Biomark Med. 2024;18(7):301–9. https://doi.org/10.2217/bmm-2023-0588.
Google Scholar
Song Y, Dan K, Yao Z, Yang X, Chen B, Hao F. Altered gut microbiota in H1-Antihistamine-Resistant chronic spontaneous urticaria associates with systemic inflammation. Front Cell Infect Microbiol. 2022;12:831489. https://doi.org/10.3389/fcimb.2022.831489.
Google Scholar
Lee CS, Jang ER, Kim YJ, Lee MS, Seo SJ, Lee MW. Hirsutenone inhibits lipopolysaccharide-activated NF-κB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation. Int Immunopharmacol. 2010;10(4):520–5. https://doi.org/10.1016/j.intimp.2010.01.015.
Google Scholar
Glick VJ, Webber CA, Simmons LE, Martin MC, Ahmad M, Kim CH, et al. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe. 2024;32(11):1897–909. https://doi.org/10.1016/j.chom.2024.09.014.
Google Scholar
Lev-Sagie A, Goldman-Wohl D, Cohen Y, Dori-Bachash M, Leshem A, Mor U, et al. Vaginal Microbiome transplantation in women with intractable bacterial vaginosis. Nat Med. 2019;25(10):1500–4. https://doi.org/10.1038/s41591-019-0600-6.
Google Scholar