Identification and profiling of novel metagenome assembled uncultivated virus genomes from human gut | Virology Journal

  • Páez-Espino D, et al. Uncovering Earth’s Virome. Nature. 2016;536:425–30.

    PubMed 

    Google Scholar 

  • Shi M, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–43.

    CAS 
    PubMed 

    Google Scholar 

  • Dayaram A, et al. Diverse circular replication-associated protein encoding viruses Circulating in invertebrates within a lake ecosystem. Infect Genet Evol. 2016;39:304–16.

    CAS 
    PubMed 

    Google Scholar 

  • Roux S, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.

    CAS 
    PubMed 

    Google Scholar 

  • Arkhipova K, et al. Temporal dynamics of uncultured viruses: a new dimension in viral diversity. ISME J. 2018;12:199–211.

    PubMed 

    Google Scholar 

  • Wilson WH, et al. Genomic exploration of individual giant ocean viruses. ISME J. 2017;11:1736–45.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Simmonds P, Adams M, Benkő M, et al. Virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8. https://doi.org/10.1038/nrmicro.2016.177.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krupovic M, Ghabrial SA, Jiang D, Varsani A. Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol. 2016;161(9):2633–43. https://doi.org/10.1007/s00705-016-2943-3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi M, Lin XD, Tian JH, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–43. https://doi.org/10.1038/nature20167.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Labonté JM, Suttle CA. Previously unknown and highly divergent SsDNA viruses populate the oceans. ISME J. 2013;7(11):2169–77. https://doi.org/10.1038/ismej.2013.110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dayaram A, Goldstien S, Argüello-Astorga GR, Zawar-Reza P, Gomez C, Harding JS, Varsani A. Diverse small circular DNA viruses Circulating amongst estuarine molluscs. Infect Genet Evol. 2015;31:284–95. https://doi.org/10.1016/j.meegid.2015.02.010.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dayaram A, Galatowitsch ML, Argüello-Astorga GR, van Bysterveldt K, Kraberger S, Stainton D, Harding JS, Roumagnac P, Martin DP, Lefeuvre P, Varsani A. Diverse circular replication-associated protein encoding viruses Circulating in invertebrates within a lake ecosystem. Infect Genet Evol. 2016;39:304–16. https://doi.org/10.1016/j.meegid.2016.02.011.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosario K, Schenck RO, Harbeitner RC, Lawler SN, Breitbart M. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins. Front Microbiol. 2015;6:696.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yutin N, Shevchenko S, Kapitonov V, Krupovic M, Koonin EV. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 2015;13:95. https://doi.org/10.1186/s12915-015-0207-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou J, Zhang W, Yan S, Xiao J, Zhang Y, Li B, Pan Y, Wang Y. Diversity of virophages in metagenomic data sets. J Virol. 2013;87(8):4225. https://doi.org/10.1128/JVI.03398-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, Seguritan V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards RA. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498. https://doi.org/10.1038/ncomms5498.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yutin N, Kapitonov VV, Koonin EV. A new family of hybrid virophages from an animal gut metagenome. Biol Direct. 2015;10:19. https://doi.org/10.1186/s13062-015-0054-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang W, Zhou J, Liu T, Yu Y, Pan Y, Yan S, Wang Y. Four novel algal virus genomes discovered from Yellowstone lake metagenomes. Sci Rep. 2015;5:15131. https://doi.org/10.1038/srep15131.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Gibson JA, Cavicchioli R. Virophage control of Antarctic algal host-virus dynamics. Proc Natl Acad Sci U S A. 2011;108(15):6163. https://doi.org/10.1073/pnas.1018221108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidtke DT, Hickey AS, Liachko I, Sherlock G, Bhatt AS. Analysis and culturing of [preprint].e [preprint].ototypic crassphage [preprint].veals a [preprint].age-plasmid lifestyle. BioRxiv [Preprint]. 2024 Mar 20:2024.03.20.585998. https://doi.org/10.1101/2024.03.20.585998

  • Roux S, Hawley AK, Beltran MT, Scofield M, Schwientek P, Stepanauskas R, Woyke T, Hallam SJ, Sullivan MB. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife Sci. 2014;3:e03125.

    Google Scholar 

  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60:174.

    CAS 
    PubMed 

    Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud GY. CRISPR elements in Yersinia pestis acquire new repeats by Preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653.

    CAS 
    PubMed 

    Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bragg JG, Chisholm SW. Modeling the fitness consequences of a Cyanophage-Encoded photosynthesis gene. PLoS ONE. 2008;3:e3550.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature. 2003;424:741.

    CAS 
    PubMed 

    Google Scholar 

  • Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Solden L, Ellenbogen J, Runyon AT, Bolduc B, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen L-X, Méheust R, Crits-Christoph A, McMahon KD, Nelson TC, Slater GF, Warren LA, Banfield JF. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat Microbiol. 2020;5:1504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, Poulos BT, Solonenko N, Lara E, Poulain J, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689.

    CAS 
    PubMed 

    Google Scholar 

  • Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, Zhou Z, Rahlff J, Esser SP, Probst AJ, Raman S, et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 2021;36:109471.

    CAS 
    PubMed 

    Google Scholar 

  • Kieft K, Zhou Z, Anderson RE, Buchan A, Campbell BJ, Hallam SJ, Hess M, Sullivan MB, Walsh DA, Roux S, et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat Commun. 2021;12:3503.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujimoto K, Kimura Y, Shimohigoshi M, Satoh T, Sato S, Tremmel G, Uematsu M, Kawaguchi Y, Usui Y, Nakano Y, et al. Metagenome data on intestinal phage-Bacteria associations aids the development of phage therapy against pathobionts. Cell Host Microbe. 2020;28:380.

    CAS 
    PubMed 

    Google Scholar 

  • Mangalea MR, Paez-Espino D, Kieft K, Chatterjee A, Chriswell ME, Seifert JA, Feser ML, Demoruelle MK, Sakatos A, Anantharaman K, et al. Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host Microbe. 2021;29:726.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O’Regan O, Ryan FJ, Draper LA, Plevy SE, Ross RP, et al. Whole-Virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe. 2019;26:764.

    CAS 
    PubMed 

    Google Scholar 

  • Bhardwaj K, Garg A, Pandey AD, Sharma H, Kumar M, Vrati S. Insights into the human gut Virome by sampling a population from the Indian Subcontinent. J Gen Virol. 2022;103(8). https://doi.org/10.1099/jgv.0.001774.

  • Nayfach S, Camargo AP, Schulz F, et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578. https://doi.org/10.1038/s41587-020-00774-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schackart KE 3rd, Graham JB, Ponsero AJ, Hurwitz BL. Evaluation of computational phage detection tools for metagenomic datasets. Front Microbiol. 2023;14:1078760. https://doi.org/10.3389/fmicb.2023.1078760.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Menzel P, Ng K, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bin Jang H, Bolduc B, Zablocki O, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632. https://doi.org/10.1038/s41587-019-0100-8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cook R, Brown N, Redgwell T, Rihtman B, Barnes M, Clokie M, Stekel DJ, Hobman J, Jones MA, Millard A. INfrastructure for a phage reference database: identification of Large-Scale biases in the current collection of cultured phage genomes. Phage (New Rochelle). 2021;2(4):214. https://doi.org/10.1089/phage.2021.0007.

    Article 
    PubMed 

    Google Scholar 

  • Turner D, Shkoporov AN, Lood C, Millard AD, Dutilh BE, Alfenas-Zerbini P, van Zyl LJ, Aziz RK, Oksanen HM, Poranen MM, Kropinski AM, Barylski J, Brister JR, Chanisvili N, Edwards RA, Enault F, Gillis A, Knezevic P, Krupovic M, Kurtböke I, Kushkina A, Lavigne R, Lehman S, Lobocka M, Moraru C, Moreno Switt A, Morozova V, Nakavuma J, Reyes Muñoz A, Rūmnieks J, Sarkar BL, Sullivan MB, Uchiyama J, Wittmann J, Yigang T, Adriaenssens EM. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol. 2023;168(2):74. https://doi.org/10.1007/s00705-022-05694-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moraru C, Varsani A, Kropinski AM. VIRIDIC-A novel tool to calculate the intergenomic similarities of Prokaryote-Infecting viruses. Viruses. 2020;12(11):1268. https://doi.org/10.3390/v12111268.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turner D, Adriaenssens EM, Tolstoy I, Kropinski AM. Phage annotation guide: guidelines for assembly and High-Quality annotation. Phage (New Rochelle). 2021;2(4):170. https://doi.org/10.1089/phage.2021.0013.

    Article 
    PubMed 

    Google Scholar 

  • Ramsey J, Rasche H, Maughmer C, Criscione A, Mijalis E, Liu M, et al. Galaxy and Apollo as a biologist-friendly interface for high-quality cooperative phage genome annotation. PLoS Comput Biol. 2020;16(11):e1008214. https://doi.org/10.1371/journal.pcbi.1008214.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouras G, Nepal R, Houtak G, Psaltis AJ, Wormald P-J. Sarah Vreugde, Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics. 2023;39. https://doi.org/10.1093/bioinformatics/btac776.

  • McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics. 2019;35(22):4537. https://doi.org/10.1093/bioinformatics/btz265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skennerton CT, Soranzo N, Angly F. MinCED. https://github.com/ctSkennerton/minced

  • Patricia P, Chan, Brian Y, Lin AJ, Mak, Todd M, Lowe. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021;49:9077.

    Google Scholar 

  • Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and TmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–6. https://doi.org/10.1093/nar/gkh152.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brian P, Alcock AR, Raphenya, Tammy TY, Lau KK, Tsang Mégane, Bouchard A, Edalatmand W, Huynh, Anna-Lisa V, Nguyen AA, Cheng S, Liu, Sally Y, Min A, Miroshnichenko H-K, Tran RE, Werfalli JA, Nasir M, Oloni DJ, Speicher N, Sharma E, Bordeleau AC, Pawlowski HL, Zubyk D, Dooley E, Griffiths F, Maguire GL, Winsor RG, Beiko, Fiona SL, Brinkman WWL, Hsiao GV, Domselaar, Andrew G, McArthur. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database, Nucleic Acids Research, 48, D517, (2020). https://doi.org/10.1093/nar/gkz935

  • Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50(D1):D912–7. https://doi.org/10.1093/nar/gkab1107.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paul Terzian EO, Ndela C, Galiez J, Lossouarn. Rubén Enrique Pérez Bucio, robin mom, Ariane Toussaint, Marie-Agnès Petit, François Enault, PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genomics Bioinf. 2021;3. https://doi.org/10.1093/nargab/lqab067.

  • Bonnie L, Hurwitz, Jana M, U’Ren. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161. https://doi.org/10.1016/j.mib.2016.04.002.

    Article 
    CAS 

    Google Scholar 

  • Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8(1):90. https://doi.org/10.1186/s40168-020-00867-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo XQ, Wang P, Li JL, et al. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. Microbiome. 2022;10:190. https://doi.org/10.1186/s40168-022-01384-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726. https://doi.org/10.1016/j.jmb.2015.11.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: a cautionary Tale for Virome analyses. ISME J. 2017;11(1):237–47. https://doi.org/10.1038/ismej.2016.90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu C, Zhang Z, Cai Z, et al. Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 2021;19:5. https://doi.org/10.1186/s12915-020-00938-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang G, Cobián-Güemes AG, Albenberg L, et al. The gut Virome in inflammatory bowel diseases. Curr Opin Virol. 2021;51:190. https://doi.org/10.1016/j.coviro.2021.10.005.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Székely AJ, Breitbart M. Single-strandedDNAphages: from early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol Lett 363, fnw027 (2016).

    PubMed 

    Google Scholar 

  • Kirchberger PC, Martinez ZA, Ochman H. Organizing the global diversity of microviruses. mBio. 2022;13(3):e0058822. https://doi.org/10.1128/mbio.00588-22.

    Article 
    PubMed 

    Google Scholar 

  • Krupovic M, Forterre P. Microviridae goes temperate: Microvirus-related proviruses reside in the genomes of bacteroidetes. PLoS ONE. 2011;6:e19893.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang G, Bushman FD. The human Virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021;19:514–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses 13, 506 (2021).

  • Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol. 2009;502:91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merrill BD, Ward AT, Grose JH, Hope S. Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. BMC Genom. 2016;17:679.

    Google Scholar 

  • Meijer WJ, Horcajadas JA, Salas M. Phi29 family of phages. Microbiol Mol Biol Rev. 2001;65:261–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iranzo J, Krupovic M, Koonin EV. The Double-Stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio. 2016;7:e00978–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adriaenssens EM. Phage diversity in the human gut microbiome: A taxonomist’s perspective. mSystems. 2021;6:e0079921.

    PubMed 

    Google Scholar 

  • Mantynen S, Laanto E, Oksanen HM, Poranen MM, Diaz-Munoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol. 2021;11:210188.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Veses-Garcia M, Liu X, Rigden DJ, Kenny JG, McCarthy AJ, Allison HE. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol. 2015;81:8118. https://doi.org/10.1128/AEM.02034-15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. Big things in small packages: the genetics of filamentous phage and effects on fitness of their host’. FEMS Microbiol Rev. 2015;39:465. https://doi.org/10.1093/femsre/fuu007).

    Article 
    PubMed 

    Google Scholar 

  • Jahn MT, Arkhipova K, Markert SM, et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe. 2019;26. https://doi.org/10.1016/j.chom.2019.08.019. 542– 50 e5.

  • Aktories K, Schwan C, Jank T. Clostridium difficile toxin biology. Annu Rev Microbiol. 2017;71:281. https://doi.org/10.1146/annurev-micro-090816-093458.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu R, Smith CA, Buchko GW, et al. Structural characterization of a soil viral auxiliary metabolic gene product– a functional Chitosanase. Nat Commun. 2022;13:5485. https://doi.org/10.1038/s41467-022-32993-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun. 2017;8:15955.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the core and flexible Pacific ocean Virome. ISME J. 2015;9:472.

    CAS 
    PubMed 

    Google Scholar 

  • Jurėnas D, Fraikin N, Goormaghtigh F, et al. Biology and evolution of bacterial toxin–antitoxin systems. Nat Rev Microbiol. 2022;20:335. https://doi.org/10.1038/s41579-021-00661-1.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thomas C, Tampé R. Structural and mechanistic principles of ABC transporters. Annu Rev Biochem. 2020;89:605. https://doi.org/10.1146/annurev-biochem-011520-105201.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22:291.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sá-Correia I, Santos SC, Teixeira MC, Cabrito TR, Mira NM. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol. 2009;17:22.

    PubMed 

    Google Scholar 

  • Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol. 2010;47(2):94. https://doi.org/10.1016/j.fgb.2009.08.002.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mann E, Ovchinnikova OG, King JD, Whitfield C. Bacteriophage-mediated glucosylation can modify lipopolysaccharide O-Antigens synthesized by an ATP-binding cassette (ABC) Transporter-dependent assembly mechanism. J Biol Chem. 2015;290(42):25561. https://doi.org/10.1074/jbc.M115.660803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakayashiki T, Mori H. Genome-Wide screening with hydroxyurea reveals a link between nonessential ribosomal proteins and reactive oxygen species production. J Bacteriol. 2013;195:1226. https://doi.org/10.1128/JB.02145-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soule T, Gao Q, Stout V, Garcia-Pichel F. The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a Temporal DNA microarray study. Photochem Photobiol. 2013;89:415. https://doi.org/10.1111/php.12014.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading