Metal-based nanomedicines for cancer theranostics | Military Medical Research

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Google Scholar 

  • Xia CF, Dong XS, Li H, Cao MM, Sun DQ, He SY, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90.

    Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Google Scholar 

  • Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    CAS 

    Google Scholar 

  • Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. Neuroimage Clin. 2016;11:435–49.

    Google Scholar 

  • Velikova G, Morden JP, Haviland JS, Emery C, Barrett-Lee P, Earl H, et al. Accelerated versus standard epirubicin followed by cyclophosphamide, methotrexate, and fluorouracil or capecitabine as adjuvant therapy for breast cancer (UK TACT2; CRUK/05/19): quality of life results from a multicentre, phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2023;24(12):1359–74.

    CAS 

    Google Scholar 

  • Lu S, Tian H, Li B, Li L, Jiang H, Gao Y, et al. An ellagic acid coordinated copper-based nanoplatform for efficiently overcoming cancer chemoresistance by cuproptosis and synergistic inhibition of cancer cell stemness. Small. 2024;20(17): e2309215.

    Google Scholar 

  • Ge XG, Fu QR, Su LC, Li Z, Zhang WM, Chen T, et al. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics. 2020;10(11):4809–21.

    CAS 

    Google Scholar 

  • Liu SE, Jiang YX, Liu PC, Yi Y, Hou DY, Li Y, et al. Single-atom gadolinium nano-contrast agents with high stability for tumor T1 magnetic resonance imaging. ACS Nano. 2023;17(9):8053–63.

    CAS 

    Google Scholar 

  • Liao T, Chen ZY, Kuang Y, Ren Z, Yu WQ, Rao W, et al. Small-size Ti3C2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation. Acta Biomater. 2023;159:312–23.

    CAS 

    Google Scholar 

  • Liu Y, Wang YH, Song SY, Zhang HJ. Tumor diagnosis and therapy mediated by metal phosphorus-based nanomaterials. Adv Mater. 2021;33(49): e2103936.

    Google Scholar 

  • Bai X, Wang SQ, Yan XL, Zhou HY, Zhan JH, Liu SJ, et al. Regulation of cell uptake and cytotoxicity by nanoparticle core under the controlled shape, size, and surface chemistries. ACS Nano. 2020;14(1):289–302.

    CAS 

    Google Scholar 

  • Wen W, Wu L, Chen Y, Qi XY, Cao J, Zhang X, et al. Ultra-small Fe3O4 nanoparticles for nuclei targeting drug delivery and photothermal therapy. J Drug Deliv Sci Technol. 2020;58:101782.

    CAS 

    Google Scholar 

  • Luo MC, Yukawa H, Sato K, Tozawa M, Tokunaga M, Kameyama T, et al. Multifunctional magnetic CuS/Gd2O3 nanoparticles for fluorescence/magnetic resonance bimodal imaging-guided photothermal-intensified chemodynamic synergetic therapy of targeted tumors. ACS Appl Mater Interfaces. 2022;14(30):34365–76.

    CAS 

    Google Scholar 

  • Wang M, Chang MY, Chen Q, Wang DM, Li CX, Hou ZY, et al. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials. 2020;252:120093.

    CAS 

    Google Scholar 

  • Alfano M, Alchera E, Sacchi A, Gori A, Quilici G, Locatelli I, et al. A simple and robust nanosystem for photoacoustic imaging of bladder cancer based on a5β1-targeted gold nanorods. J Nanobiotechnology. 2023;21(1):301.

    CAS 

    Google Scholar 

  • Guo WH, Ren YX, Chen Z, Shen GD, Lu YD, Zhou HM, et al. Targeted magnetic resonance imaging/near-infrared dual-modal imaging and ferroptosis/starvation therapy of gastric cancer with peritoneal metastasis. Adv Funct Mater. 2023;33(27):2213921.

    CAS 

    Google Scholar 

  • Li SY, Sun WJ, Luo Y, Gao YP, Jiang XP, Yuan C, et al. Hollow PtCo alloy nanospheres as a high-Z and oxygen generating nanozyme for radiotherapy enhancement in non-small cell lung cancer. J Mater Chem B. 2021;9(23):4643–53.

    CAS 

    Google Scholar 

  • Li L, Qi FL, Guo J, Fan J, Zheng WX, Ghulam M, et al. Photothermal therapy for cancer cells using optically tunable Fe2O3@Au hexagonal nanodisks. J Mater Chem A. 2023;11(39):21365–72.

    CAS 

    Google Scholar 

  • Cao XS, Li MX, Liu QY, Zhao JJ, Lu XH, Wang JW. Inorganic sonosensitizers for sonodynamic therapy in cancer treatment. Small. 2023;19(42):e2303195.

    Google Scholar 

  • Liu Y, Zhao H, Wang SH, Niu R, Bi S, Han WK, et al. A wurster-type covalent organic framework with internal electron transfer-enhanced catalytic capacity for tumor therapy. J Am Chem Soc. 2024;146(40):27345–61.

    CAS 

    Google Scholar 

  • Cao SJ, Long YP, Xiao ST, Deng YT, Ma L, Adeli M, et al. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev. 2023;52(19):6838–81.

    CAS 

    Google Scholar 

  • Liu YY, Zhang M, Bu WB. Bioactive nanomaterials for ion-interference therapy. View. 2020;1(2):e18.

    Google Scholar 

  • Li JX, Ren H, Zhang YM. Metal-based nano-vaccines for cancer immunotherapy. Coord Chem Rev. 2022;455:214345.

    CAS 

    Google Scholar 

  • Yang J, Dai DH, Zhang X, Teng LS, Ma LJ, Yang YW. Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: from single to combination therapy. Theranostics. 2023;13(1):295–323.

    CAS 

    Google Scholar 

  • Ding JY, He ZJ, Zhai YJ, Ye L, Ji JB, Yang XY, et al. Advances in metal-based nano drugs and diagnostic probes for tumor. Coord Chem Rev. 2024;501:215594.

    CAS 

    Google Scholar 

  • Zhang JJ, Wang XF, Wen J, Su XD, Weng LX, Wang CY, et al. Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation. Biomater Sci. 2019;7(11):4790–9.

    CAS 

    Google Scholar 

  • Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.

    CAS 

    Google Scholar 

  • Dawi EA, Ismail AH, Abdelkader A, Karar AA. Sputtering of size-tunable oxidized Fe nanoparticles by gas flow method. Appl Phys A Mater Sci Process. 2020;126(4):316.

    CAS 

    Google Scholar 

  • Zhao PY, Gao XF, Zhao B, Wang SB, Zhang D, Wu X, et al. Investigation on nano-grinding process of GaN using molecular dynamics simulation: nano-grinding parameters effect. J Manuf Process. 2023;102:429–42.

    Google Scholar 

  • Liu L, Wang SZ, Zhang BQ, Jiang GY, Yang JQ. Supercritical hydrothermal synthesis of nano-ZrO2: influence of technological parameters and mechanism. J Alloy Compd. 2022;898:162878.

    CAS 

    Google Scholar 

  • Fu SY, Yang RH, Ren JJ, Liu JH, Zhang L, Xu ZG, et al. Catalytically active CoFe2O4 nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. ACS Nano. 2021;15(7):11953–69.

    CAS 

    Google Scholar 

  • Liang ZW, Wang YH, Wang JP, Xu T, Ma SL, Liu Q, et al. Multifunctional Fe3O4-PEI@HA nanoparticles in the ferroptosis treatment of hepatocellular carcinoma through modulating reactive oxygen species. Colloids Surf B Biointerfaces. 2023;227:113358.

    CAS 

    Google Scholar 

  • Caraballo-Vivas RJ, Santos ECS, Valente-Rodrigues CL, Checca NR, Garcia F. Tuning between composition and nanoparticle size of manganites for self-regulated magnetic hyperthermia applications. J Phys D Appl Phys. 2023;56(25):255001.

    CAS 

    Google Scholar 

  • Anitha S, Muthukumaran S. Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Mater Sci Eng C Mater Biol Appl. 2020;108:110387.

    CAS 

    Google Scholar 

  • Gholizadeh Z, Aliannezhadi M, Ghominejad M, Tehrani FS. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method. Sci Rep. 2023;13(1):6131.

    CAS 

    Google Scholar 

  • Deng H, Xu H, Zhou JZ, Tang DS, Yang WQ, Hu M, et al. Multi-element imaging of urinary stones by LA-ICP-MS with a homogeneous co-precipitation CaC2O4-matrix calibration standard. Anal Bioanal Chem. 2023;415(9):1751–64.

    CAS 

    Google Scholar 

  • Alemayehu A, Zakharanka A, Tyrpekl V. Homogeneous precipitation of lanthanide oxalates. ACS Omega. 2022;7(14):12288–95.

    CAS 

    Google Scholar 

  • Wu KJ, Tse ECM, Shang CX, Guo ZX. Nucleation and growth in solution synthesis of nanostructures-from fundamentals to advanced applications. Prog Mater Sci. 2022;123:100821.

    CAS 

    Google Scholar 

  • Lunin AV, Kolychev EL, Mochalova EN, Cherkasov VR, Nikitin MP. Synthesis of highly-specific stable nanocrystalline goethite-like hydrous ferric oxide nanoparticles for biomedical applications by simple precipitation method. J Colloid Interface Sci. 2019;541:143–9.

    CAS 

    Google Scholar 

  • Sivakumar S, Venkatesan A, Soundhirarajan P, Khatiwada CP. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136 Pt C:1751–9.

    CAS 

    Google Scholar 

  • Liu J, Li L, Zhang B, Xu ZP. MnO2-shelled doxorubicin/curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy. J Colloid Interface Sci. 2022;617:315–25.

    CAS 

    Google Scholar 

  • Zhang LF, Lu H, Tang Y, Lu XJ, Zhang ZD, Zhang Y, et al. Calcium-peroxide-mediated cascades of oxygen production and glutathione consumption induced efficient photodynamic and photothermal synergistic therapy. J Mater Chem B. 2023;11(13):2937–45.

    CAS 

    Google Scholar 

  • Abadi B, Hosseinalipour S, Nikzad S, Pourshaikhali S, Fathalipour-Rayeni H, Shafiei G, et al. Capping agents for selenium nanoparticles in biomedical applications. J Clust Sci. 2023;34(4):1669–90.

    CAS 

    Google Scholar 

  • Bleier GC, Watt J, Simocko CK, Lavin JM, Huber DL. Reversible magnetic agglomeration: a mechanism for thermodynamic control over nanoparticle size. Angew Chem Int Ed Engl. 2018;57(26):7678–81.

    CAS 

    Google Scholar 

  • Taheri-Ledari R, Salehi MM, Esmailzadeh F, Mohammadi A, Kashtiaray A, Maleki A. A brief survey of principles of co-deposition method as a convenient procedure for preparation of metallic nanomaterials. J Alloy Compd. 2024;980: 173509.

    CAS 

    Google Scholar 

  • Pezeshk-Fallah H, Yari H, Mahdavian M, Ramezanzadeh B. Size/porosity-controlled zinc-based nanoporous-crystalline metal-organic frameworks for application in a high-performance self-healing epoxy coating. Prog Org Coat. 2023;183:107814.

    CAS 

    Google Scholar 

  • Darwish MSA, Kim H, Lee H, Ryu C, Lee JY, Yoon J. Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials (Basel). 2019;9(8):1176.

    CAS 

    Google Scholar 

  • Darwish MSA, Al-Harbi LM, Bakry A. Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application. J Therm Anal Calorim. 2022;147(21):11921–30.

    CAS 

    Google Scholar 

  • Chin YC, Yang LX, Hsu FT, Hsu CW, Chang TW, Chen HY, et al. Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J Nanobiotechnology. 2022;20(1):373.

    CAS 

    Google Scholar 

  • Hachem K, Ansari MJ, Saleh RO, Kzar HH, Al-Gazally ME, Altimari US, et al. Methods of chemical synthesis in the synthesis of nanomaterial and nanoparticles by the chemical deposition method: a review. BioNanoScience. 2022;12(3):1032–57.

    Google Scholar 

  • Yu ZF, He YY, Schomann T, Wu KF, Hao Y, Suidgeest E, et al. Achieving effective multimodal imaging with rare-earth ion-doped CaF2 nanoparticles. Pharmaceutics. 2022;14(4):840.

    CAS 

    Google Scholar 

  • Thendral KT, Amutha M, Ragunathan R. Design and development of copper cobaltite (CuCo2O4) nanoparticle for antibacterial anticancer and photocatalytic activity. Mater Lett. 2023;349:134720.

    Google Scholar 

  • Fakhraian H, Nassimi A, Javadi N. Reinvestigating the synthesis and properties of high energetic MOFs based on 5,5′-bistetrazole-1,1′-diolate (BTO2-) and some transition metal cations (Pb2+, Cu2+and Ag+). Inorg Chim Acta. 2023;553:121520.

    CAS 

    Google Scholar 

  • He N, Zhu XL, Liu FX, Yu R, Xue ZH, Liu XH. Rational design of FeS2-encapsulated covalent organic frameworks as stable and reusable nanozyme for dual-signal detection glutathione in cell lysates. Chem Eng J. 2022;445:136543.

    CAS 

    Google Scholar 

  • Supriya S, Das S, Senapati S, Naik R. One-pot hydrothermal synthesis of Cu2Te/NiTe nanocomposite materials: a structural, morphological, and optical study. J Am Ceram Soc. 2023;106(10):5955–64.

    CAS 

    Google Scholar 

  • Wijakmatee T, Shimoyama Y, Orita Y. Systematically designed surface and morphology of magnetite nanoparticles using monocarboxylic acid with various chain lengths under hydrothermal condition. Langmuir. 2023;39(26):9253–61.

    CAS 

    Google Scholar 

  • Wang XB, Cheng Y, Han XQ, Yan J, Wu YY, Song PP, et al. Functional 2D iron-based nanosheets for synergistic immunotherapy, phototherapy, and chemotherapy of tumor. Adv Healthc Mater. 2022;11(19):e2200776.

    Google Scholar 

  • Ul Hassan SM, Akram W, Saifullah A, Khurshid A, Ali Z, Shahzad F, et al. Novel PEGylated ZnO nanoparticles with optimized Y dopant exhibiting PL imaging, PDT and CT contrast properties. Mater Lett. 2022;315:131986.

    Google Scholar 

  • Xu ZP, Stevenson GS, Lu CQ, Lu GQM, Bartlett PF, Gray PP. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J Am Chem Soc. 2006;128(1):36–7.

    CAS 

    Google Scholar 

  • Tong YC, Feng M, Wei JH, Wang DT, Wang QY. One-step synthesis of CoFe2O4 nanomaterials by solvothermal method. Bull Chem Soc Jpn. 2022;95(7):1086–90.

    CAS 

    Google Scholar 

  • Ranoo S, Lahiri BB, Damodaran SP, Philip J. Tuning magnetic heating efficiency of colloidal dispersions of iron oxide nano-clusters by varying the surfactant concentration during solvothermal synthesis. J Mol Liq. 2022;360:119444.

    CAS 

    Google Scholar 

  • Li XJ, Li B, Li R, Yao YZ, Fan N, Qi R, et al. Synthesis of an efficient paramagnetic ZnFe2O4 agent for NIR-I/II responsive photothermal performance. J Alloy Compd. 2023;936:168161.

    CAS 

    Google Scholar 

  • Yeste MP, Fernández-Ponce C, Félix E, Tinoco M, Fernández-Cisnal R, García-Villar C, et al. Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques. Ceram Int. 2022;48(21):31191–202.

    CAS 

    Google Scholar 

  • Asakura Y, Akahira T, Kobayashi M, Osada M, Yin S. Synthesis of NaMoO3F and Na5W3O9F5 with morphological controllability in non-aqueous solvents. Inorg Chem. 2020;59(15):10707–16.

    CAS 

    Google Scholar 

  • Duong HDT, Yoon SH, Nguyen DT, Kim KS. Magnetic heating of water dispersible and size-controlled superparamagnetic cobalt iron oxide nanoparticles. Powder Technol. 2023;427:118720.

    CAS 

    Google Scholar 

  • Duong HDT, Nguyen DT, Kim KS. Effects of process variables on properties of CoFe2O4 nanoparticles prepared by solvothermal process. Nanomaterials (Basel). 2021;11(11):3056.

    CAS 

    Google Scholar 

  • Kelly SN, Russo DR, Arino T, Smith PW, Straub MD, Arnold J, et al. Precursor identity and surfactant concentration influence shape of UO2 nanoparticles. Inorg Chem. 2025;64(16):8117–24.

    CAS 

    Google Scholar 

  • Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133(32):12624–31.

    CAS 

    Google Scholar 

  • Sobhani A, Salavati-Niasari M. Simple synthesis and characterization of nickel phosphide nanostructures assisted by different inorganic precursors. J Mater Sci Mater Electron. 2016;27(4):3619–27.

    CAS 

    Google Scholar 

  • Singapati AY, Ravikumar C. Mechanism of nanoparticle formation in the liquid-phase thermal decomposition method. Langmuir. 2023;39(27):9325–42.

    CAS 

    Google Scholar 

  • Fokina V, Wilke M, Dulle M, Ehlert S, Förster S. Size control of iron oxide nanoparticles synthesized by thermal decomposition methods. J Phys Chem C. 2022;126(50):21356–67.

    CAS 

    Google Scholar 

  • Liu JH, Jin LH, Wang YH, Ding X, Zhang ST, Song SY, et al. A new Co-P nanocomposite with ultrahigh relaxivity for in vivo magnetic resonance imaging-guided tumor eradication by chemo/photothermal synergistic therapy. Small. 2018;14(7):1702431.

    Google Scholar 

  • Dong PL, Zhang TT, Xiang HJ, Xu X, Lv YH, Wang Y, et al. Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. J Mater Chem B. 2021;9(4):958–68.

    CAS 

    Google Scholar 

  • Demessie AA, Park Y, Singh P, Moses AS, Korzun T, Sabei FY, et al. An advanced thermal decomposition method to produce magnetic nanoparticles with ultrahigh heating efficiency for systemic magnetic hyperthermia. Small Methods. 2022;6(12):e2200916.

    Google Scholar 

  • Feld A, Weimer A, Kornowski A, Winckelmans N, Merkl JP, Kloust H, et al. Chemistry of shape-controlled iron oxide nanocrystal formation. ACS Nano. 2019;13(1):152–62.

    CAS 

    Google Scholar 

  • Daneshmand-Jahromi S, Sedghkerdar MH, Mahinpey N. Synthesis, characterization, and kinetic study of nanostructured copper-based oxygen carrier supported on silica and zirconia aerogels in the cyclic chemical looping combustion process. Chem Eng J. 2022;448:137756.

    CAS 

    Google Scholar 

  • An SY. Characterization of mossbauer and superparamagnetic properties in maghemite nanoparticles synthesized by a sol-gel method. J Electron Mater. 2023;52(9):6308–15.

    CAS 

    Google Scholar 

  • Miranda-López MI, Contreras-Torres FF, Cavazos-Cavazos D, Martínez-Ortiz PF, Pineda-Aguilar N, Hernández MB, et al. Crystal evolution of nano-sized CoCr2O4 synthesized by a modified sol-gel method. J Phys Chem Solids. 2023;178:111315.

    Google Scholar 

  • Danks AE, Hall SR, Schnepp Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater Horizons. 2016;3(2):91–112.

    CAS 

    Google Scholar 

  • Sumida K, Liang K, Reboul J, Ibarra IA, Furukawa S, Falcaro P. Sol-gel processing of metal-organic frameworks. Chem Mat. 2017;29(7):2626–45.

    CAS 

    Google Scholar 

  • Arya S, Mahajan P, Mahajan S, Khosla A, Datt R, Gupta V, et al. Review-influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J Solid State Sci Technol. 2021;10(2):023002.

    CAS 

    Google Scholar 

  • Yang C, Su ZL, Wang YS, Fan HL, Liang MS, Chen ZH. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents. Chin J Chem Eng. 2023;56:233–41.

    CAS 

    Google Scholar 

  • Lal M, Sharma P, Ram C. Calcination temperature effect on titanium oxide (TiO2) nanoparticles synthesis. Optik. 2021;241:166934.

    CAS 

    Google Scholar 

  • Rodríguez-Barajas N, Becerra-Solano L, Gutiérrez-Mercado YK, Macías-Carballo M, Gómez CM, Pérez-Larios A. Study of the interaction of Ti-Zn as a mixed oxide at different pH values synthesized by the sol-gel method and its antibacterial properties. Nanomaterials (Basel). 2022;12(12):1948.

    Google Scholar 

  • Sheikhi S, Aliannezhadi M, Tehrani FS. Effect of precursor material, pH, and aging on ZnO nanoparticles synthesized by one-step sol-gel method for photodynamic and photocatalytic applications. Eur Phys J Plus. 2021;137(1):60.

    Google Scholar 

  • Xu N, Hu A, Pu XM, Li JF, Wang XM, Wang J, et al. Fe(III)-chelated polydopamine nanoparticles for synergistic tumor therapies of enhanced photothermal ablation and antitumor immune activation. ACS Appl Mater Interfaces. 2022;14(14):15894–910.

    CAS 

    Google Scholar 

  • Tavakol M, Hajipour MJ, Ferdousi M, Zanganeh S, Maurizi L. Competition of opsonins and dysopsonins on the nanoparticle surface. Nanoscale. 2023;15(43):17342–9.

    CAS 

    Google Scholar 

  • Grundler J, Whang C-H, Shin K, Savan NA, Zhong M, Saltzman WM. Modifying the backbone chemistry of PEG-based bottlebrush block copolymers for the formation of long-circulating nanoparticles. Adv Healthc Mater. 2024;13(22):e2304040.

    Google Scholar 

  • Deng Y, Huang F, Zhang J, Liu J, Li B, Ouyang RZ, et al. PEGylated iridium-based nano-micelle: self-assembly, selective tumor fluorescence imaging and photodynamic therapy. Dyes Pigment. 2020;182:108651.

    CAS 

    Google Scholar 

  • Shi LW, Zhang JQ, Zhao M, Tang SK, Cheng X, Zhang WY, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748–64.

    CAS 

    Google Scholar 

  • Dubey R, Shende P. Potential of brush and mushroom conformations in biomedical applications. Chem Pap. 2024;78(12):6873–89.

    CAS 

    Google Scholar 

  • Tian XS, Yuan YM. Impacts of polyethylene glycol (PEG) dispersity on protein adsorption, pharmacokinetics, and biodistribution of PEGylated gold nanoparticles. RSC Adv. 2024;14(29):20757–64.

    CAS 

    Google Scholar 

  • Wan Q, Yuan HM, Cai P, Liu Y, Yan T, Wang L, et al. Effects of PEGylation on imaging contrast of 68Ga-labeled bicyclic peptide PET probes targeting nectin-4. Mol Pharm. 2024;21(9):4430–40.

    CAS 

    Google Scholar 

  • Wang XW, Zhong XY, Cheng L. Titanium-based nanomaterials for cancer theranostics. Coord Chem Rev. 2021;430:213662.

    CAS 

    Google Scholar 

  • He Z, Guo YJ, Chen JZ, Luo HL, Liu XX, Zhang XM, et al. Unsaturated phospholipid modified FeOCl nanosheets for enhancing tumor ferroptosis. J Mater Chem B. 2023;11(9):1891–903.

    CAS 

    Google Scholar 

  • Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19(5):566–75.

    CAS 

    Google Scholar 

  • Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol. 2020;40(1):16–36.

    Google Scholar 

  • Yu FF, Wang TY, Wang YH, Liu TF, Xiong HJ, Liu L, et al. Nanozyme-nanoclusters in metal-organic framework: GSH triggered Fenton reaction for imaging guided synergistic chemodynamic-photothermal therapy. Chem Eng J. 2023;472:144910.

    CAS 

    Google Scholar 

  • Yu J, He XD, Zhang QF, Zhou DF, Wang ZG, Huang YB. Iodine conjugated Pt(IV) nanoparticles for precise chemotherapy with iodine-Pt guided computed tomography imaging and biotin-mediated tumor-targeting. ACS Nano. 2022;16(4):6835–46.

    CAS 

    Google Scholar 

  • Meng XQ, Fan HZ, Chen L, He JY, Hong CY, Xie JY, et al. Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy. Nat Commun. 2024;15(1):1626.

    CAS 

    Google Scholar 

  • Qin RX, Li S, Qiu YW, Feng YS, Liu YQ, Ding DD, et al. Carbonized paramagnetic complexes of Mn (II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors. Nat Commun. 2022;13(1):1938.

    CAS 

    Google Scholar 

  • Wang Z, Xing HY, Liu AN, Guan L, Li XC, He L, et al. Multifunctional nano-system for multi-mode targeted imaging and enhanced photothermal therapy of metastatic prostate cancer. Acta Biomater. 2023;166:581–92.

    CAS 

    Google Scholar 

  • Liu DL, Li JJ, Wang CB, An L, Lin JM, Tian QW, et al. Ultrasmall Fe@Fe3O4 nanoparticles as T1–T2 dual-mode MRI contrast agents for targeted tumor imaging. Nanomedicine. 2021;32:102335.

    CAS 

    Google Scholar 

  • Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, et al. X-ray computed tomography. Nat Rev Methods Primers. 2021;1(1):18.

    CAS 

    Google Scholar 

  • Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.

    CAS 

    Google Scholar 

  • Fitzgerald PF, Colborn RE, Edic PM, Lambert JW, Torres AS, Bonitatibus PJ, et al. CT image contrast of high-Z elements: phantom imaging studies and clinical implications. Radiology. 2016;278(3):723–33.

    Google Scholar 

  • Mazloumi M, Van Gompel G, Kersemans V, De Mey J, Buls N. The presence of contrast agent increases organ radiation dose in contrast-enhanced CT. Eur Radiol. 2021;31(10):7540–9.

    CAS 

    Google Scholar 

  • Deng YH, Wang XF, Wu X, Yan P, Liu Q, Wu T, et al. Differential renal proteomics analysis in a novel rat model of iodinated contrast-induced acute kidney injury. Ren Fail. 2023;45(1):2178821.

    Google Scholar 

  • Wu JJ, Shen JX, Wang WP, Jiang N, Jin HJ, Che XJ, et al. A novel contrast-induced acute kidney injury mouse model based on low-osmolar contrast medium. Ren Fail. 2022;44(1):1345–55.

    Google Scholar 

  • Gamboa P, De Vicente JS, Galán C, Jáuregui I, Segurola A, García-Lirio E, et al. Non-immediate hypersensitivity reactions to iomeprol: diagnostic value of skin tests and cross-reactivity with other iodinated contrast media. Allergy. 2022;77(12):3641–7.

    Google Scholar 

  • Cruje C, Dunmore-Buyze PJ, Grolman E, Holdsworth DW, Gillies ER, Drangova M. PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Sci Rep. 2021;11(1):16603.

    CAS 

    Google Scholar 

  • Ahmed S, Baijal G, Somashekar R, Iyer S, Nayak V. One pot synthesis of PEGylated bimetallic gold-silver nanoparticles for imaging and radiosensitization of oral cancers. Int J Nanomedicine. 2021;16:7103–21.

    CAS 

    Google Scholar 

  • Shariati A, Delavari HH, Poursalehi R. Synthesis and characterization of polydopamine nanoparticles functionalized with hyaluronic acid as a potentially targeted computed tomography contrast agent. BioNanoScience. 2023;13(2):564–75.

    Google Scholar 

  • Asadinezhad M, Azimian H, Ghadiri H, Khademi S. Gold nanoparticle parameters play an essential role as CT imaging contrast agents. J Nanostruct. 2021;11(4):668–77.

    CAS 

    Google Scholar 

  • Inose T, Oikawa T, Tokunaga M, Yamauchi N, Nakashima K, Kato C, et al. Development of composite nanoparticles composed of silica-coated nanorods and single nanometer-sized gold particles toward a novel X-ray contrast agent. Mater Sci Eng B Adv Funct Solid State Mater. 2020;262:114716.

    CAS 

    Google Scholar 

  • Xu JW, Cheng XJ, Chen FX, Li WJ, Xiao XH, Lai PX, et al. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy. J Mater Sci Technol. 2021;63:97–105.

    CAS 

    Google Scholar 

  • Guan ZP, Zhang TS, Zhu H, Lyu D, Sarangapani S, Xu QH, et al. Simultaneous imaging and selective photothermal therapy through aptamer-driven Au nanosphere clustering. J Phys Chem Lett. 2019;10(2):183–8.

    CAS 

    Google Scholar 

  • Xu PC, Wang R, Yang WQ, Liu YY, He DS, Ye ZX, et al. A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. J Nanobiotechnology. 2021;19(1):77.

    CAS 

    Google Scholar 

  • D’hollander A, Vande Velde G, Jans H, Vanspauwen B, Vermeersch E, Jose J, et al. Assessment of the theranostic potential of gold nanostars-a multimodal imaging and photothermal treatment study. Nanomaterials (Basel). 2020;10(11):2112.

    Google Scholar 

  • Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, et al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Rep. 2019;9(1):14912.

    Google Scholar 

  • Haghighi RR, Chatterjee S, Chatterjee VV, Hosseinipanah S, Tadrisinik F. Dependence of the effective mass attenuation coefficient of gold nanoparticles on its radius. Phys Med. 2022;95:25–31.

    Google Scholar 

  • Wu MH, Zhang YY, Zhang Y, Wu MJ, Wu ML, Wu HY, et al. Tumor angiogenesis targeting and imaging using gold nanoparticle probe with directly conjugated cyclic NGR. RSC Adv. 2018;8(3):1706–16.

    CAS 

    Google Scholar 

  • Ashton JR, Gottlin EB, Patz EF, West JL, Badea CT. A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One. 2018;13(11):e0206950.

    Google Scholar 

  • Amato C, Susenburger M, Lehr S, Kuntz J, Gehrke N, Franke D, et al. Dual-contrast photon-counting micro-CT using iodine and a novel bismuth-based contrast agent. Phys Med Biol. 2023;68(13):135001.

    CAS 

    Google Scholar 

  • Zelepukin IV, Ivanov IN, Mirkasymov AB, Shevchenko KG, Popov AA, Prasad PN, et al. Polymer-coated BiOCl nanosheets for safe and regioselective gastrointestinal X-ray imaging. J Control Release. 2022;349:475–85.

    CAS 

    Google Scholar 

  • Xu WJ, Cui P, Happonen E, Leppänen J, Liu LZ, Rantanen J, et al. Tailored synthesis of PEGylated bismuth nanoparticles for X-ray computed tomography and photothermal therapy: one-pot, targeted pyrolysis, and self-promotion. ACS Appl Mater Interfaces. 2020;12(42):47233–44.

    CAS 

    Google Scholar 

  • Shakeri M, Delavari HH, Montazerabadi A, Yourdkhani A. Hyaluronic acid-coated ultrasmall BiOI nanoparticles as a potentially targeted contrast agent for X-ray computed tomography. Int J Biol Macromol. 2022;217:668–76.

    CAS 

    Google Scholar 

  • Bao Q, Zhang Y, Liu XY, Yang T, Yue H, Yang MY, et al. Enhanced cancer imaging and chemo-photothermal combination therapy by cancer-targeting bismuth-based nanoparticles. Adv Opt Mater. 2023;11(11):2201482.

    CAS 

    Google Scholar 

  • Ghazanfari A, Marasini S, Miao X, Park JA, Jung KH, Ahmad MY, et al. Synthesis, characterization, and X-ray attenuation properties of polyacrylic acid-coated ultrasmall heavy metal oxide (Bi2O3, Yb2O3, NaTaO3, Dy2O3, and Gd2O3) nanoparticles as potential CT contrast agents. Colloid Surf A Physicochem Eng Asp. 2019;576:73–81.

    CAS 

    Google Scholar 

  • Tian YL, Yi WH, Shao QY, Ma MH, Bai L, Song RD, et al. Automatic-degradable Mo-doped W18O49 based nanotheranostics for CT/FL imaging guided synergistic chemo/photothermal/chemodynamic therapy. Chem Eng J. 2023;462:142156.

    CAS 

    Google Scholar 

  • Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: state-of-the-art. Adv Drug Deliv Rev. 2022;189:114524.

    CAS 

    Google Scholar 

  • Greffier J, Villani N, Defez D, Dabli D, Si-Mohamed S. Spectral CT imaging: technical principles of dual-energy CT and multi-energy photon-counting CT. Diagn Interv Imaging. 2023;104(4):167–77.

    Google Scholar 

  • Lei P, Chen H, Feng C, Yuan X, Xiong ZL, Liu YL, et al. Noninvasive visualization of sub-5 mm orthotopic hepatic tumors by a nanoprobe-mediated positive and reverse contrast-balanced imaging strategy. ACS Nano. 2022;16(1):897–909.

    CAS 

    Google Scholar 

  • Li YH, Tan XX, Wang H, Ji XR, Fu Z, Zhang K, et al. Spectral computed tomography-guided photothermal therapy of osteosarcoma by bismuth sulfide nanorods. Nano Res. 2023;16(7):9885–93.

    CAS 

    Google Scholar 

  • Strange C, Shroff GS, Truong MT, Rohren EM. Pitfalls in interpretation of PET/CT in the chest. Semin Ultrasound CT MR. 2021;42(6):588–98.

    Google Scholar 

  • Ghosh S, Liang Y, Cai W, Chakravarty R. In situ radiochemical doping of functionalized inorganic nanoplatforms for theranostic applications: a paradigm shift in nanooncology. J Nanobiotechnology. 2025;23(1):407.

    CAS 

    Google Scholar 

  • Swidan MM, Abd El-Motaleb M, Sakr TM. Unraveling the diagnostic phase of 99mTc-doped iron oxide nanoprobe in sarcoma bearing mice. J Drug Deliv Sci Technol. 2022;78:103990.

    CAS 

    Google Scholar 

  • Heo GS, Zhao YF, Sultan D, Zhang XH, Detering L, Luehmann HP, et al. Assessment of copper nanoclusters for accurate in vivo tumor imaging and potential for translation. ACS Appl Mater Interfaces. 2019;11(22):19669–78.

    CAS 

    Google Scholar 

  • Shin TJ, Jung W, Ha JY, Kim BH, Kim YH. The significance of the visible tumor on preoperative magnetic resonance imaging in localized prostate cancer. Prostate Int. 2021;9(1):6–11.

    Google Scholar 

  • Stephen ZR, Kievit FM, Zhang MQ. Magnetite nanoparticles for medical MR imaging. Mater Today (Kidlington). 2011;14(7–8):330–8.

    CAS 

    Google Scholar 

  • Jeon M, Halbert MV, Stephen ZR, Zhang MQ. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Adv Mater. 2021;33(23):e1906539.

    Google Scholar 

  • Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10(1):1727–41.

    CAS 

    Google Scholar 

  • Caravan P, Ellison JJ, Mcmurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–352.

    CAS 

    Google Scholar 

  • Shahid I, Joseph A, Lancelot E. Use of real-life safety data from international pharmacovigilance databases to assess the importance of symptoms associated with gadolinium exposure. Invest Radiol. 2022;57(10):664–73.

    CAS 

    Google Scholar 

  • Ahmad MY, Liu SW, Tegafaw T, Al Saidi AKA, Zhao DJ, Liu Y, et al. Biotin-conjugated poly(acrylic acid)-grafted ultrasmall gadolinium oxide nanoparticles for enhanced tumor imaging. Eur J Inorg Chem. 2023;26(27): e202300430.

    CAS 

    Google Scholar 

  • Dai Y, Wu C, Wang S, Li Q, Zhang M, Li JJ, et al. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent. Nanomedicine. 2018;14(2):547–55.

    CAS 

    Google Scholar 

  • Li JL, Jiang X, Shang LH, Li Z, Yang CL, Luo Y, et al. L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent. Drug Deliv. 2021;28(1):134–43.

    CAS 

    Google Scholar 

  • Yang LJ, Wang LL, Huang GM, Zhang X, Chen LL, Li A, et al. Improving the sensitivity of T1 contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics. 2021;11(14):6966–82.

    CAS 

    Google Scholar 

  • Zeng JF, Jing LH, Hou Y, Jiao MX, Qiao RR, Jia QJ, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater. 2014;26(17):2694–8.

    CAS 

    Google Scholar 

  • Thapa B, Diaz-Diestra D, Beltran-Huarac J, Weiner BR, Morell G. Enhanced MRI T2 relaxivity in contrast-probed anchor-free PEGylated iron oxide nanoparticles. Nanoscale Res Lett. 2017;12(1):312.

    Google Scholar 

  • Soleymani M, Khalighfard S, Khodayari S, Khodayari H, Kalhori MR, Hadjighassem MR, et al. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci Rep. 2020;10(1):1695.

    CAS 

    Google Scholar 

  • Rezayan AH, Kheirjou S, Edrisi M, Ardestani MS, Alvandi H. A modified PEG-Fe3O4 magnetic nanoparticles conjugated with D(+)glucosamine (DG): MRI contrast agent. J Inorg Organomet Polym Mater. 2022;32(6):1988–98.

    CAS 

    Google Scholar 

  • Shao HL, Min C, Issadore D, Liong M, Yoon TJ, Weissleder R, et al. Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics. 2012;2(1):55–65.

    CAS 

    Google Scholar 

  • Feng Z, Tang T, Wu TX, Yu XM, Zhang YH, Wang M, et al. Perfecting and extending the near-infrared imaging window. Light Sci Appl. 2021;10(1):197.

    CAS 

    Google Scholar 

  • Zhang X, Wang WL, Su LC, Ge XG, Ye JM, Zhao CY, et al. Plasmonic-fluorescent janus Ag/Ag2S nanoparticles for in situ H2O2-activated NIR-II fluorescence imaging. Nano Lett. 2021;21(6):2625–33.

    CAS 

    Google Scholar 

  • Guan XL, Zhang LY, Lai SJ, Zhang JM, Wei JY, Wang K, et al. Green synthesis of glyco-CuInS2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. J Nanobiotechnol. 2023;21(1):118.

    CAS 

    Google Scholar 

  • Yong KT, Law WC, Hu R, Ye L, Liu LW, Swihart MT, et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev. 2013;42(3):1236–50.

    CAS 

    Google Scholar 

  • Awasthi P, An XY, Xiang JJ, Kalva N, Shen YQ, Li CY. Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-II biological imaging. Nanoscale. 2020;12(9):5678–84.

    CAS 

    Google Scholar 

  • Lian W, Tu DT, Hu P, Song XR, Gong ZL, Chen T, et al. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today. 2020;35:100943.

    CAS 

    Google Scholar 

  • Chen J, Wang C, Yin Y, Liu R, Meng FX, Wang SS, et al. Upconversion luminescence enhancement and color modulation in Yb3+/Er3+/Ln3+ (Ln = Tm, Ho) tri-doped YF3 microrods. Opt Mater. 2023;140:113839.

    CAS 

    Google Scholar 

  • Auzel F. History of upconversion discovery and its evolution. J Lumines. 2020;223:116900.

    CAS 

    Google Scholar 

  • Yu ZF, He YY, Schomann T, Wu KF, Hao Y, Suidgeest E, et al. Rare-earth-metal (Nd3+, Ce3+ and Gd3+)-doped CaF2: nanoparticles for multimodal imaging in biomedical applications. Pharmaceutics. 2022;14(12):2796.

    CAS 

    Google Scholar 

  • Li RY, Li ZJ, Sun XL, Ji J, Liu L, Gu ZG, et al. Graphene quantum dot-rare earth upconversion nanocages with extremely high efficiency of upconversion luminescence, stability and drug loading towards controlled delivery and cancer theranostics. Chem Eng J. 2020;382:122992.

    Google Scholar 

  • Wang YX, Feng M, Lin B, Peng XR, Wang Z, Lv RC. MET-targeted NIR II luminescence diagnosis and up-conversion guided photodynamic therapy for triple-negative breast cancer based on a lanthanide nanoprobe. Nanoscale. 2021;13(43):18125–33.

    CAS 

    Google Scholar 

  • Zhang ZC, Yang Y, Zhao MY, Lu LF, Zhang F, Fan Y. Tunable and enhanced NIR-II luminescence from heavily doped rare-earth nanoparticles for in vivo bioimaging. ACS Appl Bio Mater. 2022;5(6):2935–42.

    CAS 

    Google Scholar 

  • Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li ZP, et al. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano. 2012;6(9):8280–7.

    CAS 

    Google Scholar 

  • Xu F, Luo W, Abudula A, Wang YY, Sun ZJ. Control and enhancement of upconversion luminescence of NaYF4:Yb,Er nanoparticles with multiplet independent resonance modes in multiplexed metal gratings. J Lumines. 2023;253:119487.

    CAS 

    Google Scholar 

  • Lv RC, Wang YX, Lin B, Peng XR, Liu J, Lü WD, et al. Targeted luminescent probes for precise upconversion/NIR II luminescence diagnosis of lung adenocarcinoma. Anal Chem. 2021;93(11):4984–92.

    CAS 

    Google Scholar 

  • Liang Y, An R, Du PY, Lei PP, Zhang HJ. NIR-activated upconversion nanoparticles/hydrogen-bonded organic framework nanocomposites for NIR-II imaging-guided cancer therapy. Nano Today. 2023;48:101751.

    CAS 

    Google Scholar 

  • Du JY, Yang SS, Qiao YC, Lu HT, Dong HF. Recent progress in near-infrared photoacoustic imaging. Biosens Bioelectron. 2021;191:113478.

    CAS 

    Google Scholar 

  • Li ZF, Zhang C, Zhang X, Sui J, Jin L, Lin LS, et al. NIR-II functional materials for photoacoustic theranostics. Bioconjug Chem. 2022;33(1):67–86.

    CAS 

    Google Scholar 

  • Hou H, Chen LM, He HL, Chen LZ, Zhao ZL, Jin YD. Fine-tuning the LSPR response of gold nanorod-polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation. J Mater Chem B. 2015;3(26):5189–96.

    CAS 

    Google Scholar 

  • Alchera E, Monieri M, Maturi M, Locatelli I, Locatelli E, Tortorella S, et al. Early diagnosis of bladder cancer by photoacoustic imaging of tumor-targeted gold nanorods. Photoacoustics. 2022;28:100400.

    Google Scholar 

  • He T, Jiang C, He J, Zhang YF, He G, Wu JYZ, et al. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv Mater. 2021;33(13):e2008540.

    Google Scholar 

  • Zhang Y, Li Y, Li JY, Mu F, Wang J, Shen C, et al. DNA-templated Ag@Pd nanoclusters for NIR-II photoacoustic imaging-guided photothermal-augmented nanocatalytic therapy. Adv Healthc Mater. 2023;12(22):e2300267.

    Google Scholar 

  • Fu QR, Zhu R, Song JB, Yang HH, Chen XY. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater. 2019;31(6):e1805875.

    Google Scholar 

  • Gao K, Tu WZ, Yu XJ, Ahmad F, Zhang XN, Wu WJ, et al. W-doped TiO2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors. Theranostics. 2019;9(18):5214–26.

    CAS 

    Google Scholar 

  • Zhang XS, Wei JS, Chen JW, Cheng K, Zhang F, Ashraf G, et al. A nanoplatform of hollow Ag2S/Ag nanocomposite shell for photothermal and enhanced sonodynamic therapy mediated by photoacoustic and CT imaging. Chem Eng J. 2022;433(Pt 2): 133196.

    CAS 

    Google Scholar 

  • Wang Z, He L, Che ST, Xing HY, Guan L, Yang Z, et al. AuNCs-LHRHa nano-system for FL/CT dual-mode imaging and photothermal therapy of targeted prostate cancer. J Mater Chem B. 2022;10(27):5182–90.

    CAS 

    Google Scholar 

  • Li L, Zhang LY, Wang TT, Wu XT, Ren H, Wang CG, et al. Facile and scalable synthesis of novel spherical Au nanocluster assemblies@polyacrylic acid/calcium phosphate nanoparticles for dual-modal imaging-guided cancer chemotherapy. Small. 2015;11(26):3162–73.

    CAS 

    Google Scholar 

  • Wu J, Liu J, Lin B, Lv RC, Yuan Y, Tao XF. Met-targeted dual-modal MRI/NIR II imaging for specific recognition of head and neck squamous cell carcinoma. ACS Biomater Sci Eng. 2021;7(4):1640–50.

    CAS 

    Google Scholar 

  • Dong XW, Ye J, Wang YH, Xiong HJ, Jiang H, Lu HB, et al. Ultra-small and metabolizable near-infrared Au/Gd nanoclusters for targeted FL/MRI imaging and cancer theranostics. Biosensors (Basel). 2022;12(8):558.

    CAS 

    Google Scholar 

  • Bi SH, Deng ZM, Jiang Q, Jiang MY, Zeng SJ. A H2S-triggered dual-modal second near-infrared/photoacoustic intelligent nanoprobe for highly specific imaging of colorectal cancer. Anal Chem. 2021;93(39):13212–8.

    CAS 

    Google Scholar 

  • Wang Z, Jia T, Sun QQ, Kuang Y, Liu B, Xu MS, et al. Construction of Bi/phthalocyanine manganese nanocomposite for trimodal imaging directed photodynamic and photothermal therapy mediated by 808 nm light. Biomaterials. 2020;228:119569.

    CAS 

    Google Scholar 

  • Shan XR, Chen Q, Yin XY, Jiang CZ, Li TH, Wei SS, et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B. 2020;8(3):426–37.

    CAS 

    Google Scholar 

  • Xue ZL, Yi ZG, Li XL, Li YB, Jiang MY, Liu HR, et al. Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials. 2017;115:90–103.

    CAS 

    Google Scholar 

  • Lipengolts AA, Finogenova YA, Skribitsky VA, Shpakova KE, Anaki A, Motiei M, et al. CT and MRI imaging of theranostic bimodal Fe3O4@Au nanoparticles in tumor bearing mice. Int J Mol Sci. 2022;24(1):70.

    Google Scholar 

  • Ouyang RZ, Cao PH, Jia PP, Wang H, Zong TY, Dai CY, et al. Bistratal Au@Bi2S3 nanobones for excellent NIR-triggered/multimodal imaging-guided synergistic therapy for liver cancer. Bioact Mater. 2020;6(2):386–403.

    Google Scholar 

  • Men XJ, Chen HB, Sun C, Liu YB, Wang RB, Zhang XJ, et al. Thermosensitive polymer dot nanocomposites for trimodal computed tomography/photoacoustic/fluorescence imaging-guided synergistic chemo-photothermal therapy. ACS Appl Mater Interfaces. 2020;12(46):51174–84.

    CAS 

    Google Scholar 

  • Liu H, Wang R, Gao H, Chen L, Li X, Yu X, et al. Nanoprobes for PET/MR imaging. Adv Therap. 2024;7(2):2300232.

    CAS 

    Google Scholar 

  • Hu XM, Tang YF, Hu YX, Lu F, Lu XM, Wang YQ, et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics. 2019;9(14):4168–81.

    CAS 

    Google Scholar 

  • Yamini S, Gunaseelan M, Kumar GA, Singh S, Dannangoda GC, Martirosyan KS, et al. NaGdF4:Yb,Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications. Mikrochim Acta. 2020;187(6):317.

    CAS 

    Google Scholar 

  • Taheri-Ledari R, Zarei-Shokat S, Qazi FS, Ghafori-Gorab M, Ganjali F, Kashtiaray A, et al. A mesoporous magnetic Fe3O4/BioMOF-13 with a core/shell nanostructure for targeted delivery of doxorubicin to breast cancer cells. ACS Appl Mater Interfaces. 2025;17(12):17703–17.

    CAS 

    Google Scholar 

  • Sykes EA, Chen J, Zheng G, Chan WCW. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8(6):5696–706.

    CAS 

    Google Scholar 

  • Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 2020;12(4):371.

    CAS 

    Google Scholar 

  • Zhang XY, Wu JR, Williams GR, Yang YB, Niu SW, Qian QQ, et al. Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. J Colloid Interface Sci. 2019;539:433–41.

    CAS 

    Google Scholar 

  • Bulatao BP, Nalinratana N, Jantaratana P, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Lutein-loaded chitosan/alginate-coated Fe3O4 nanoparticles as effective targeted carriers for breast cancer treatment. Int J Biol Macromol. 2023;242(Pt 1):124673.

    CAS 

    Google Scholar 

  • Suk JS, Xu QG, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51.

    CAS 

    Google Scholar 

  • Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, et al. Transferrin-copper nanocluster-doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl Mater Interfaces. 2018;10(4):3282–94.

    CAS 

    Google Scholar 

  • Zhao HX, Li TT, Yao C, Gu Z, Liu CX, Li JH, et al. Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl Mater Interfaces. 2021;13(5):6034–42.

    CAS 

    Google Scholar 

  • Jiang H, Wang Q, Li L, Zeng Q, Li HM, Gong T, et al. Turning the old adjuvant from gel to nanoparticles to amplify CD8+ T cell responses. Adv Sci (Weinh). 2017;5(1):1700426.

    Google Scholar 

  • Yu WQ, He XQ, Yang ZH, Yang XT, Xiao W, Liu R, et al. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials. 2019;217:119309.

    CAS 

    Google Scholar 

  • Belyaev IB, Zelepukin I, Tishchenko VK, Petriev VM, Trushina DB, Klimentov SM, et al. Nanoparticles based on MIL-101 metal-organic frameworks as efficient carriers of therapeutic 188Re radionuclide for nuclear medicine. Nanotechnology. 2024;35(7):075103.

    CAS 

    Google Scholar 

  • Abdelfattah A, Aboutaleb AE, Abdel-Aal AM, Abdellatif AH, Tawfeek HM, Abdel-Rahman SI. Design and optimization of PEGylated silver nanoparticles for efficient delivery of doxorubicin to cancer cells. J Drug Deliv Sci Technol. 2022;71:103347.

    CAS 

    Google Scholar 

  • Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr Polym. 2020;248:116735.

    CAS 

    Google Scholar 

  • Wozniak-Budych MJ, Langer K, Peplinska B, Przysiecka L, Jarek M, Jarzebski M, et al. Copper-gold nanoparticles: fabrication, characteristic and application as drug carriers. Mater Chem Phys. 2016;179:242–53.

    CAS 

    Google Scholar 

  • Oladipo AO, Nkambule TTI, Mamba BB, Msagati TM. The stimuli-responsive properties of doxorubicin adsorbed onto bimetallic Au@Pd nanodendrites and its potential application as drug delivery platform. Mater Sci Eng C Mater Biol Appl. 2020;110:110696.

    CAS 

    Google Scholar 

  • Mukherjee S, Kotcherlakota R, Haque S, Bhattacharya D, Kumar JM, Chakravarty S, et al. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Mater Sci Eng C Mater Biol Appl. 2020;108:110375.

    CAS 

    Google Scholar 

  • Alizadeh F, Yaghoobi E, Imanimoghadam M, Ramezani M, Alibolandi M, Abnous K, et al. Targeted delivery of epirubicin to cancerous cell using copper sulphide nanoparticle coated with polyarginine and 5TR1 aptamer. J Drug Target. 2023;31(9):986–97.

    CAS 

    Google Scholar 

  • Li Q, Sun LH, Hou MM, Chen QB, Yang RH, Zhang L, et al. Phase-change material packaged within hollow copper sulfide nanoparticles carrying doxorubicin and chlorin e6 for fluorescence-guided trimodal therapy of cancer. ACS Appl Mater Interfaces. 2019;11(1):417–29.

    CAS 

    Google Scholar 

  • Zhu XY, Gu JL, Wang Y, Li B, Li YS, Zhao WR, et al. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun (Camb). 2014;50(63):8779–82.

    CAS 

    Google Scholar 

  • Abbasi E, Milani M, Aval SF, Kouhi M, Akbarzadeh A, Nasrabadi HT, et al. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2016;42(2):173–80.

    CAS 

    Google Scholar 

  • Gurunathan S, Qasim M, Park C, Yoo H, Kim JH, Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int J Mol Sci. 2018;19(8):2269.

    Google Scholar 

  • Thapa RK, Kim JH, Jeong JN, Shin BS, Choi HG, Yong CS, et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids Surf B Biointerfaces. 2017;153:95–103.

    CAS 

    Google Scholar 

  • Hongsa N, Thinbanmai T, Luesakul U, Sansanaphongpricha K, Muangsin N. A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluo-rouracil delivery: synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr Polym. 2022;277:118858.

    CAS 

    Google Scholar 

  • Li YT, Jin J, Wang DW, Lv JW, Hou K, Liu YL, et al. Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018;11(6):3294–305.

    CAS 

    Google Scholar 

  • Zhou ZX, Liu XR, Zhu DC, Wang Y, Zhang Z, Zhou XF, et al. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev. 2017;115:115–54.

    CAS 

    Google Scholar 

  • Lin G, Zhang Y, Zhang L, Wang JQ, Tian Y, Cai W, et al. Metal-organic frameworks nanoswitch: toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020;13(1):238–45.

    CAS 

    Google Scholar 

  • Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, et al. Tailoring iron oxide nanoparticles for efficient cellular internalization and endosomal escape. Nanomaterials (Basel). 2020;10(9):1816.

    CAS 

    Google Scholar 

  • Zhao M, Li J, Chen DW, Hu HY. A valid bisphosphonate modified calcium phosphate-based gene delivery system: increased stability and enhanced transfection efficiency in vitro and in vivo. Pharmaceutics. 2019;11(9):468.

    CAS 

    Google Scholar 

  • Song WT, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials. 2017;148:16–30.

    CAS 

    Google Scholar 

  • Dey A, Manna S, Kumar S, Chattopadhyay S, Saha B, Roy S. Immunostimulatory effect of chitosan conjugated green copper oxide nanoparticles in tumor immunotherapy. Cytokine. 2020;127:154958.

    CAS 

    Google Scholar 

  • Chen SB, Li DD, Du XJ, He XY, Huang MW, Wang Y, et al. Carrier-free nanoassembly of doxorubicin prodrug and siRNA for combinationally inducing immunogenic cell death and reversing immunosuppression. Nano Today. 2020;35:100924.

    CAS 

    Google Scholar 

  • An G, Zheng H, Guo L, Huang J, Yang C, Bai Z, et al. A metal-organic framework (MOF) built on surface-modified Cu nanoparticles eliminates tumors via multiple cascading synergistic therapeutic effects. J Colloid Interface Sci. 2024;662:298–312.

    CAS 

    Google Scholar 

  • Hou YY, Wang Y, Tang Y, Zhou ZX, Tan L, Gong T, et al. Co-delivery of antigen and dual adjuvants by aluminum hydroxide nanoparticles for enhanced immune responses. J Control Release. 2020;326:120–30.

    CAS 

    Google Scholar 

  • Liu Y, Niu R, Zhao H, Wang YH, Song SY, Zhang HJ, et al. Single-site nanozymes with a highly conjugated coordination structure for antitumor immunotherapy via cuproptosis and cascade-enhanced T lymphocyte activity. J Am Chem Soc. 2024;146(6):3675–88.

    CAS 

    Google Scholar 

  • Chiang CS, Lin YJ, Lee R, Lai YH, Cheng HW, Hsieh CH, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol. 2018;13(8):746–54.

    CAS 

    Google Scholar 

  • Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905.

    CAS 

    Google Scholar 

  • Ouyang B, Poon W, Zhang YN, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour delivery. Nat Mater. 2020;19(12):1362–71.

    CAS 

    Google Scholar 

  • Chen QR, Yuan L, Chou WC, Cheng YH, He CL, Monteiro-Riviere NA, et al. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano. 2023;17(20):19810–31.

    CAS 

    Google Scholar 

  • Lomax ME, Folkes LK, O’neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol). 2013;25(10):578–85.

    CAS 

    Google Scholar 

  • Gong LY, Zhang YJ, Liu CC, Zhang MZ, Han SX. Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2021;16:1083–102.

    Google Scholar 

  • Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, et al. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol. 2020;65(21):21RM02.

    CAS 

    Google Scholar 

  • Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol. 2018;63(2):02TR1.

    Google Scholar 

  • Hua Y, Huang JH, Shao ZH, Luo XM, Wang ZY, Liu JQ, et al. Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv Mater. 2022;34(31):e2203734.

    Google Scholar 

  • Guo XX, Guo ZH, Lu JS, Xie WS, Zhong QZ, Sun XD, et al. All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation. Nanoscale. 2021;13(34):14525–37.

    CAS 

    Google Scholar 

  • Ma NN, Wu FG, Zhang XD, Jiang YW, Jia HR, Wang HY, et al. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl Mater Interfaces. 2017;9(15):13037–48.

    CAS 

    Google Scholar 

  • Dou Y, Guo YY, Li XD, Li X, Wang S, Wang L, et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano. 2016;10(2):2536–48.

    CAS 

    Google Scholar 

  • Liu PD, Jin HZ, Guo ZR, Ma J, Zhao J, Li DD, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomedicine. 2016;11:5003–14.

    CAS 

    Google Scholar 

  • Afifi MM, El-Gebaly RH, Abdelrahman IY, Rageh MM. Efficacy of iron-silver bimetallic nanoparticles to enhance radiotherapy. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(12):3647–57.

    CAS 

    Google Scholar 

  • Fu WH, Zhang X, Mei LQ, Zhou RY, Yin WY, Wang Q, et al. Stimuli-responsive small-on-large nanoradiosensitizer for enhanced tumor penetration and radiotherapy sensitization. ACS Nano. 2020;14(8):10001–17.

    CAS 

    Google Scholar 

  • Gupta A, Sood A, Bhardwaj D, Shrimali N, Singhmar R, Chaturvedi S, et al. Functionalized chitosan decorated hafnium oxide@gold core-shell nanoparticles for multimodal cancer therapy. Adv Therap. 2024;7(2):2300165.

    CAS 

    Google Scholar 

  • Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Sunyach MP, Saada E, et al. A phase II/III trial of hafnium oxide nanoparticles activated by radiotherapy in the treatment of locally advance soft tissue sarcoma of the extremity and trunk wall. Ann Oncol. 2018;29:753.

    Google Scholar 

  • Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomedicine. 2014;10(8):1751–5.

    CAS 

    Google Scholar 

  • Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles. Theranostics. 2020;10(3):1319–31.

    CAS 

    Google Scholar 

  • Verry C, Dufort S, Villa J, Gavard M, Iriart C, Grand S, et al. Theranostic AGuIX nanoparticles as radiosensitizer: a phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother Oncol. 2021;160:159–65.

    CAS 

    Google Scholar 

  • Du Z, Wang X, Zhang X, Gu ZJ, Fu XY, Gan SJ, et al. X-ray-triggered carbon monoxide and manganese dioxide generation based on scintillating nanoparticles for cascade cancer radiosensitization. Angew Chem Int Ed Engl. 2023;62(23):e202302525.

    CAS 

    Google Scholar 

  • Chen JX, Gong MF, Fan YL, Feng J, Han LL, Xin HL, et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano. 2022;16(1):910–20.

    CAS 

    Google Scholar 

  • Zhao SB, Luo YQ, Chang Z, Liu CC, Li T, Gan L, et al. BSA-coated gold nanorods for NIR-II photothermal therapy. Nanoscale Res Lett. 2021;16(1):170.

    CAS 

    Google Scholar 

  • Xie BB, Zhao HC, Shui MJ, Ding YF, Sun C, Wang ZY, et al. Spermine-responsive intracellular self-aggregation of gold nanocages for enhanced chemotherapy and photothermal therapy of breast cancer. Small. 2022;18(30):e2201971.

    Google Scholar 

  • Sun L, Bai HF, Jiang HJ, Zhang P, Li J, Qiao WD, et al. MoS2/LaF3 for enhanced photothermal therapy performance of poorly-differentiated hepatoma. Colloids Surf B Biointerfaces. 2022;214:112462.

    CAS 

    Google Scholar 

  • Gao Q, He X, He L, Lin J, Wang L, Xie Y, et al. Hollow Cu2-xSe-based nanocatalysts for combined photothermal and chemodynamic therapy in the second near-infrared window. Nanoscale. 2023;15(44):17987–95.

    CAS 

    Google Scholar 

  • Li XQ, Cao Y, Xu B, Zhao Y, Zhang TQ, Wang YH, et al. A bimetallic nanozyme with cascade effect for synergistic therapy of cancer. ChemMedChem. 2022;17(8):e202100663.

    CAS 

    Google Scholar 

  • Xiong JS, Bian QH, Lei SJ, Deng YT, Zhao KH, Sun SQ, et al. Bi19S27I3 nanorods: a new candidate for photothermal therapy in the first and second biological near-infrared windows. Nanoscale. 2021;13(10):5369–82.

    CAS 

    Google Scholar 

  • Geng P, Yu N, Macharia DK, Meng RR, Qiu P, Tao C, et al. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy. Chem Eng J. 2022;441:135964.

    CAS 

    Google Scholar 

  • Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano. 2015;9(1):6–11.

    CAS 

    Google Scholar 

  • Su Z, Yang Z, Xie L, Dewitt JP, Chen Y. Cancer therapy in the necroptosis era. Cell Death Differ. 2016;23(5):748–56.

    CAS 

    Google Scholar 

  • Zhang YJ, Zhan XL, Xiong J, Peng SS, Huang W, Joshi R, et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep. 2018;8(1):8720.

    Google Scholar 

  • Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop K, et al. Photodynamic therapy: mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.

    Google Scholar 

  • Pashootan P, Saadati F, Fahimi H, Rahmati M, Strippoli R, Zarrabi A, et al. Metal-based nanoparticles in cancer therapy: exploring photodynamic therapy and its interplay with regulated cell death pathways. Int J Pharm. 2024;649:123622.

    CAS 

    Google Scholar 

  • Yaraki MT, Liu B, Tan YN. Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nanomicro Lett. 2022;14(1):123.

    CAS 

    Google Scholar 

  • Sun JY, Kormakov S, Liu Y, Huang Y, Wu DM, Yang ZG. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules. 2018;23(7):1704.

    Google Scholar 

  • Yin JC, Wu HN, Wang X, Tian L, Yang RL, Liu LZ, et al. Plasmonic nano-dumbbells for enhanced photothermal and photodynamic synergistic damage of cancer cells. Appl Phys Lett. 2020;116(16):163702.

    CAS 

    Google Scholar 

  • Crous A, Abrahamse H. Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci. 2020;21(11):3742.

    CAS 

    Google Scholar 

  • Li ZW, Wang C, Cheng L, Gong H, Yin SN, Gong QF, et al. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials. 2013;34(36):9160–70.

    CAS 

    Google Scholar 

  • Yu JT, Li Q, Wei ZX, Fan GL, Wan FY, Tian LL. Ultra-stable MOF@MOF nanoplatform for photodynamic therapy sensitized by relieved hypoxia due to mitochondrial respiration inhibition. Acta Biomater. 2023;170:330–43.

    CAS 

    Google Scholar 

  • Mohseni H, Imanparast A, Salarabadi SS, Sazgarnia A. In vitro evaluation of the intensifying photodynamic effect due to the presence of plasmonic hollow gold nanoshells loaded with methylene blue on breast and melanoma cancer cells. Photodiagnosis Photodyn Ther. 2022;40:103065.

    CAS 

    Google Scholar 

  • Yang YM, Hu Y, Du H, Ren E, Wang HJ. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Int J Nanomedicine. 2018;13:2065–78.

    CAS 

    Google Scholar 

  • Buchner M, Calavia PG, Muhr V, Kröninger A, Baeumner AJ, Hirsch T, et al. Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells. Photochem Photobiol Sci. 2019;18(1):98–109.

    CAS 

    Google Scholar 

  • Zhang ZY, Ni DL, Wang F, Yin X, Goel S, German LN, et al. In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Res. 2020;13(12):3217–23.

    CAS 

    Google Scholar 

  • Yu Y, Geng JL, Ong EYX, Chellappan V, Tan YN. Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv Healthc Mater. 2016;5(19):2528–35.

    CAS 

    Google Scholar 

  • Sargazi S, Simge ER, Gelen SS, Rahdar A, Bilal M, Arshad R, et al. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: an updated and comprehensive review. J Drug Deliv Sci Technol. 2022;75:103605.

    CAS 

    Google Scholar 

  • Fatima H, Jin ZY, Shao ZP, Chen XJ. Recent advances in ZnO-based photosensitizers: synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci. 2022;621:440–63.

    CAS 

    Google Scholar 

  • Pan QL, Li MM, Xiao MC, He YL, Sun GY, Xue T, et al. Semiconductor quantum dots (CdX, X=S, Te, Se) modify titanium dioxide nanoparticles for photodynamic inactivation of leukemia HL60 cancer cells. J Nanomater. 2021;2021:4125350.

    Google Scholar 

  • Yang D, Gulzar A, Yang GX, Gai SL, He F, Dai YL, et al. Au nanoclusters sensitized black TiO2-x nanotubes for enhanced photodynamic therapy driven by near-infrared light. Small. 2017;13(48):1703007.

    Google Scholar 

  • Pan M, Hu DR, Yuan LP, Yu Y, Li YC, Qian ZY. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B. 2023;13(7):2926–54.

    CAS 

    Google Scholar 

  • Son S, Kim JH, Wang XW, Zhang CL, Yoon SA, Shin J, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 2020;49(11):3244–61.

    CAS 

    Google Scholar 

  • Yang FF, Dong J, Li ZF, Wang ZH. Metal-organic frameworks (MOF)-assisted sonodynamic therapy in anticancer applications. ACS Nano. 2023;17(5):4102–33.

    CAS 

    Google Scholar 

  • Wang H, Guo JX, Lin W, Fu Z, Ji XR, Yu B, et al. Open-shell nanosensitizers for glutathione responsive cancer sonodynamic therapy. Adv Mater. 2022;34(15):e2110283.

    Google Scholar 

  • Das M, Pandey V, Jajoria K, Bhatia D, Gupta I, Shekhar H. Glycosylated porphyrin derivatives for sonodynamic therapy: ROS generation and cytotoxicity studies in breast cancer cells. ACS Omega. 2023;9(1):1196–205.

    Google Scholar 

  • Liang S, Deng X, Xu G, Xiao X, Wang M, Guo X, et al. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Adv Funct Mater. 2020;30(13):1908598.

    CAS 

    Google Scholar 

  • Liao HQ, Chen MY, Liao ZP, Luo Y, Chen SJ, Wang L, et al. MnO2-based nanoparticles remodeling tumor micro-environment to augment sonodynamic immunotherapy against breast cancer. Biomater Sci. 2025;13(10):2767–82.

    CAS 

    Google Scholar 

  • Gonçalves KD, Vieira DP, Levy D, Bydlowski SP, Courrol LC. Uptake of silver, gold, and hybrids silver-iron, gold-iron and silver-gold aminolevulinic acid nanoparticles by MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther. 2020;32:102080.

    Google Scholar 

  • Dong ZL, Feng LZ, Hao Y, Li QG, Chen MC, Yang ZJ, et al. Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem. 2020;6(6):1391–407.

    CAS 

    Google Scholar 

  • Zhao YY, Wen M, Yu N, Tao C, Ren Q, Qiu P, et al. Design and synthesis of cancer-cell-membrane-camouflaged hemoporfin-Cu9S8 nanoagents for homotypic tumor-targeted photothermal-sonodynamic therapy. J Colloid Interface Sci. 2023;637:225–36.

    CAS 

    Google Scholar 

  • Sazgarnia A, Shanei A, Eshghi H, Hassanzadeh-Khayyat M, Esmaily H, Shanei MM. Detection of sonoluminescence signals in a gel phantom in the presence of protoporphyrin IX conjugated to gold nanoparticles. Ultrasonics. 2013;53(1):29–35.

    CAS 

    Google Scholar 

  • Sazgarnia A, Shanei A, Meibodi NT, Eshghi H, Nassirli H. A novel nanosonosensitizer for sonodynamic therapy in vivo study on a colon tumor model. J Ultrasound Med. 2011;30(10):1321–9.

    Google Scholar 

  • Deng XY, Guo Y, Zhang XD, Wu W, Wu YL, Jing DD, et al. Film-facilitated formation of ferrocenecarboxylic acid-embedded metal-organic framework nanoparticles for sonodynamic osteosarcoma treatment. Mater Today Chem. 2022;24:100842.

    CAS 

    Google Scholar 

  • Zhang C, Xin L, Li J, Cao J, Sun Y, Wang X, et al. Metal-organic framework (MOF)-based ultrasound-responsive dual-sonosensitizer nanoplatform for hypoxic cancer therapy. Adv Healthc Mater. 2022;11(2):e2101946.

    Google Scholar 

  • Zhao YM, Liu JH, He MT, Dong Q, Zhang L, Xu ZG, et al. Platinum-titania schottky junction as nanosonosensitizer, glucose scavenger, and tumor microenvironment-modulator for promoted cancer treatment. ACS Nano. 2022;16(8):12118–33.

    CAS 

    Google Scholar 

  • Perota G, Zahraie N, Vais RD, Zare MH, Sattarahmady N. Au/TiO2 nanocomposite as a triple-sensitizer for 808 and 650 nm phototherapy and sonotherapy: synergistic therapy of melanoma cancer in vitro. J Drug Deliv Sci Technol. 2022;76:103787.

    CAS 

    Google Scholar 

  • Cao Y, Wu TT, Dai WH, Dong HF, Zhang XJ. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem Mat. 2019;31(21):9105–14.

    CAS 

    Google Scholar 

  • Liu Y, Wang Y, Zhen WY, Wang YH, Zhang ST, Zhao Y, et al. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials. 2020;251:120075.

    CAS 

    Google Scholar 

  • Guan X, Yin HH, Xu XH, Xu G, Zhang Y, Zhou BG, et al. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs’ separation. Adv Funct Mater. 2020;30(27):2000326.

    CAS 

    Google Scholar 

  • Wang F, Wang BY, You W, Chen G, You YZ. Integrating Au and ZnO nanoparticles onto graphene nanosheet for enhanced sonodynamic therapy. Nano Res. 2022;15(10):9223–33.

    CAS 

    Google Scholar 

  • Dai C, Zhang SJ, Liu Z, Wu R, Chen Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano. 2017;11(9):9467–80.

    CAS 

    Google Scholar 

  • Liang S, Xiao X, Bai LX, Liu B, Yuan M, Ma PA, et al. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. Adv Mater. 2021;33(18):e2100333.

    Google Scholar 

  • Pan XT, Bai LX, Wang H, Wu QY, Wang HY, Liu S, et al. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater. 2018;30(23):e1800180.

    Google Scholar 

  • Ma AQ, Chen HQ, Cui YH, Luo ZY, Liang RJ, Wu ZH, et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small. 2019;15(5):e1804028.

    Google Scholar 

  • Yang BW, Chen Y, Shi JL. Nanocatalytic medicine. Adv Mater. 2019;31(39):e1901778.

    Google Scholar 

  • Zhang C, Bu WB, Ni DL, Zhang SJ, Li Q, Yao ZW, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chem Int Ed Engl. 2016;55(6):2101–6.

    CAS 

    Google Scholar 

  • Guan SQ, Liu XJ, Li CL, Wang XY, Cao DM, Wang JX, et al. Intracellular mutual amplification of oxidative stress and inhibition multidrug resistance for enhanced sonodynamic/chemodynamic/chemo therapy. Small. 2022;18(13):e2107160.

    Google Scholar 

  • Jia CY, Guo YX, Wu FG. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small. 2022;18(6):e2103868.

    Google Scholar 

  • Liu Y, Zhen WY, Wang YH, Liu JH, Jin LH, Zhang TQ, et al. One-dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew Chem Int Ed Engl. 2019;58(8):2407–12.

    CAS 

    Google Scholar 

  • Liu CZ, Chen YX, Zhao J, Wang Y, Shao YL, Gu ZN, et al. Self-assembly of copper-DNAzyme nanohybrids for dual-catalytic tumor therapy. Angew Chem Int Ed Engl. 2021;60(26):14324–8.

    CAS 

    Google Scholar 

  • Liu Y, Wu JD, Jin YH, Zhen WY, Wang YH, Liu JH, et al. Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Adv Funct Mater. 2019;29(50):1904678.

    CAS 

    Google Scholar 

  • Duan JL, Liao T, Xu XY, Liu Y, Kuang Y, Li C. Metal-polyphenol nanodots loaded hollow MnO2 nanoparticles with a “dynamic protection” property for enhanced cancer chemodynamic therapy. J Colloid Interface Sci. 2023;634:836–51.

    CAS 

    Google Scholar 

  • Sun LN, Cao Y, Li WJ, Wang L, Ding P, Lu ZZ, et al. Perovskite-type manganese vanadate sonosensitizers with biodegradability for enhanced sonodynamic therapy of cancer. Small. 2023;19(27):e2300101.

    Google Scholar 

  • Zhu HJ, Huang SY, Ding MB, Li ZB, Li JC, Wang SH, et al. Sulfur defect-engineered biodegradable cobalt sulfide quantum dot-driven photothermal and chemodynamic anticancer therapy. ACS Appl Mater Interfaces. 2022;14(22):25183–96.

    CAS 

    Google Scholar 

  • Li DY, Ha EN, Zhang JG, Wang LY, Hu JQ. A synergistic chemodynamic-photodynamic-photothermal therapy platform based on biodegradable Ce-doped MoOx nanoparticles. Nanoscale. 2022;14(39):14471–81.

    CAS 

    Google Scholar 

  • Liu QW, Zhang A, Wang RH, Zhang Q, Cui DX. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nanomicro Lett. 2021;13(1):154.

    CAS 

    Google Scholar 

  • Dong SM, Dong YS, Jia T, Liu SK, Liu J, Yang D, et al. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv Mater. 2020;32(42):e2002439.

    Google Scholar 

  • Pan MM, Li PZ, Yu YP, Jiang M, Yang XL, Zhang P, et al. Bimetallic ions functionalized metal-organic-framework nanozyme for tumor microenvironment regulating and enhanced photodynamic therapy for hypoxic tumor. Adv Healthc Mater. 2023;12(26):e2300821.

    Google Scholar 

  • Feng J, Kong F, Yue WS, Yu H, He ZL, Zhai YN, et al. Covalent organic framework-based nanozyme for cascade-amplified synergistic cancer therapy. Sci China Mater. 2023;66(10):4079–89.

    CAS 

    Google Scholar 

  • Zhu YL, Wang Z, Zhao RX, Zhou YH, Feng LL, Gai SL, et al. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano. 2022;16(2):3105–18.

    CAS 

    Google Scholar 

  • Zhang JG, Ha E, Li DY, He SQ, Wang LY, Kuang SL, et al. Dual enzyme-like Co-FeSe2 nanoflowers with GSH degradation capability for NIR II-enhanced catalytic tumor therapy. J Mater Chem B. 2023;11(19):4274–86.

    CAS 

    Google Scholar 

  • Wan X, Zhang H, Yan Q, Hu H, Pan W, Chai Y, et al. Three-dimensional covalent organic frameworks as enzyme nanoprotector: preserving the activity of catalase in acidic environment for hypoxia cancer therapy. Mater Today Nano. 2022;19:100236.

    CAS 

    Google Scholar 

  • Dong SM, Dong YS, Liu B, Liu J, Liu SK, Zhao ZY, et al. Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy. Adv Mater. 2022;34(7):e2107054.

    Google Scholar 

  • Liu J, Dong SM, Gai SL, Dong YS, Liu B, Zhao ZY, et al. Design and mechanism insight of monodispersed AuCuPt alloy nanozyme with antitumor activity. ACS Nano. 2023;17(20):20402–23.

    CAS 

    Google Scholar 

  • Wang ZQ, Li GL, Gao Y, Yu Y, Yang P, Li B, et al. Trienzyme-like iron phosphates-based (FePOs) nanozyme for enhanced anti-tumor efficiency with minimal side effects. Chem Eng J. 2021;404:125574.

    CAS 

    Google Scholar 

  • Liu Y, Zhao H, Zhao YL. Designing efficient single metal atom biocatalysts at the atomic structure level. Angew Chem Int Ed Engl. 2024;63(13):e202315933.

    CAS 

    Google Scholar 

  • Zhang SL, Ao X, Huang J, Wei B, Zhai YL, Zhai D, et al. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021;21(22):9691–8.

    CAS 

    Google Scholar 

  • Liu Y, Wang B, Zhu JJ, Xu XN, Zhou B, Yang Y. Single-atom nanozyme with asymmetric electron distribution for tumor catalytic therapy by disrupting tumor redox and energy metabolism homeostasis. Adv Mater. 2023;35(9):e2208512.

    Google Scholar 

  • Liu Y, Niu R, Deng RP, Wang YH, Song SY, Zhang HJ. Multi-enzyme co-expressed nanomedicine for anti-metastasis tumor therapy by up-regulating cellular oxidative stress and depleting cholesterol. Adv Mater. 2024;36(2):e2307752.

    Google Scholar 

  • Yu SP, Canzoniero LMT, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol. 2001;13(4):405–11.

    CAS 

    Google Scholar 

  • Okada Y. Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem Biophys. 2004;41(2):233–58.

    Google Scholar 

  • Jiang W, Yin L, Chen HM, Paschall AV, Zhang LY, Fu WY, et al. NaCl nanoparticles as a cancer therapeutic. Adv Mater. 2019;31(46):e1904058.

    Google Scholar 

  • Ding BB, Sheng JY, Zheng P, Li CX, Li D, Cheng ZY, et al. Biodegradable upconversion nanoparticles induce pyroptosis for cancer immunotherapy. Nano Lett. 2021;21(19):8281–9.

    CAS 

    Google Scholar 

  • Liu Y, Zhen WY, Wang YH, Song SY, Zhang HJ. Na2S2O8 nanoparticles trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J Am Chem Soc. 2020;142(52):21751–7.

    CAS 

    Google Scholar 

  • Pardo LA, Stühmer W. The roles of K+ channels in cancer. Nat Rev Cancer. 2014;14(1):39–48.

    CAS 

    Google Scholar 

  • Zhang M, Shen B, Song RX, Wang H, Lv B, Meng XF, et al. Radiation-assisted metal ion interference tumor therapy by barium peroxide-based nanoparticles. Mater Horizons. 2019;6(5):1034–40.

    CAS 

    Google Scholar 

  • Wu Y, Huang P, Dong XP. Lysosomal calcium channels in autophagy and cancer. Cancers (Basel). 2021;13(6):1299.

    CAS 

    Google Scholar 

  • Choi S, Cui CC, Luo YH, Kim SH, Ko JK, Huo XF, et al. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. FASEB J. 2018;32(1):404–16.

    CAS 

    Google Scholar 

  • Guo DD, Du YX, Wu QX, Jiang WJ, Bi HS. Disrupted calcium homeostasis is involved in elevated zinc ion-induced photoreceptor cell death. Arch Biochem Biophys. 2014;560:44–51.

    CAS 

    Google Scholar 

  • Ollig J, Kloubert V, Taylor KM, Rink L. B cell activation and proliferation increase intracellular zinc levels. J Nutr Biochem. 2019;64:72–9.

    CAS 

    Google Scholar 

  • Zhang M, Song RX, Liu YY, Yi ZG, Meng XF, Zhang JW, et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem. 2019;5(8):2171–82.

    CAS 

    Google Scholar 

  • Johnstone TC, Suntharalingam K, Lippard SJ. Third row transition metals for the treatment of cancer. Philos Trans A Math Phys Eng Sci. 2015;373(2037):20140185.

    Google Scholar 

  • Zheng SZ, Li GT, Shi JB, Liu XY, Li M, He ZG, et al. Emerging platinum(IV) prodrug nanotherapeutics: a new epoch for platinum-based cancer therapy. J Control Release. 2023;361:819–46.

    CAS 

    Google Scholar 

  • Vigna V, Scoditti S, Spinello A, Mazzone G, Sicilia E. Anticancer activity, reduction mechanism and G-quadruplex DNA binding of a redox-activated platinum(IV)-salphen complex. Int J Mol Sci. 2022;23(24):15579.

    CAS 

    Google Scholar 

  • Luo KJ, Guo WX, Yu YT, Xu SM, Zhou M, Xiang KQ, et al. Reduction-sensitive platinum (IV)-prodrug nano-sensitizer with an ultra-high drug loading for efficient chemo-radiotherapy of Pt-resistant cervical cancer in vivo. J Control Release. 2020;326:25–37.

    CAS 

    Google Scholar 

  • Bi HT, Dai YL, Yang PP, Xu JT, Yang D, Gai SL, et al. Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2-Pt@Au25 nanosheets. Chem Eng J. 2019;356:543–53.

    CAS 

    Google Scholar 

  • Zhou FY, Feng B, Yu HJ, Wang DG, Wang TT, Ma YT, et al. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv Mater. 2019;31(14):e1805888.

    Google Scholar 

  • Galluzzi L, Kepp O, Hett E, Kroemer G, Marincola FM. Immunogenic cell death in cancer: concept and therapeutic implications. J Transl Med. 2023;21(1):162.

    CAS 

    Google Scholar 

  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75.

    CAS 

    Google Scholar 

  • Sen S, Won M, Levine MS, Noh Y, Sedgwick AC, Kim JS, et al. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem Soc Rev. 2022;51(4):1212–33.

    CAS 

    Google Scholar 

  • Liu Y, Wang YH, Song SY, Zhang HJ. Cascade-responsive nanobomb with domino effect for anti-tumor synergistic therapies. Natl Sci Rev. 2022;9(3):nwab139.

    CAS 

    Google Scholar 

  • Niu R, Liu Y, Xu B, Deng RP, Zhou SJ, Cao Y, et al. Programmed targeting pyruvate metabolism therapy amplified single-atom nanozyme-activated pyroptosis for immunotherapy. Adv Mater. 2024;36(24):e2312124.

    Google Scholar 

  • Liu Y, Niu R, Deng RP, Song SY, Wang YH, Zhang HJ. Multi-enzyme co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism. J Am Chem Soc. 2023;145(16):8965–78.

    CAS 

    Google Scholar 

  • Li J, Wang SJ, Lin XY, Cao YB, Cai ZX, Wang J, et al. Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nanomicro Lett. 2022;14(1):57.

    CAS 

    Google Scholar 

  • Tan X, Huang JZ, Wang YQ, He SS, Jia L, Zhu YH, et al. Transformable nanosensitizer with tumor microenvironment-activated sonodynamic process and calcium release for enhanced cancer immunotherapy. Angew Chem Int Ed Engl. 2021;60(25):14051–9.

    CAS 

    Google Scholar 

  • Ma YC, Zhang YX, Li XQ, Zhao YY, Li M, Jiang W, et al. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano. 2019;13(10):11967–80.

    CAS 

    Google Scholar 

  • Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S. Hyperthermia using nanoparticles – promises and pitfalls. Int J Hyperthermia. 2016;32(1):76–88.

    CAS 

    Google Scholar 

  • Pan J, Hu P, Guo YD, Hao JN, Ni DL, Xu YY, et al. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano. 2020;14(1):1033–44.

    CAS 

    Google Scholar 

  • Oleszycka E, Lavelle EC. Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol. 2014;28:1–5.

    CAS 

    Google Scholar 

  • Lv MZ, Chen MX, Zhang R, Zhang W, Wang CG, Zhang Y, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020;30(11):966–79.

    CAS 

    Google Scholar 

  • Zhao Z, Ma ZX, Wang B, Guan YK, Su XD, Jiang ZF. Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP. Cell Rep. 2020;32(7):108053.

    CAS 

    Google Scholar 

  • Hou L, Tian CY, Yan YS, Zhang LW, Zhang HJ, Zhang ZZ. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano. 2020;14(4):3927–40.

    CAS 

    Google Scholar 

  • Sun XQ, Zhang Y, Li JQ, Park KS, Han K, Zhou XW, et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol. 2021;16(11):1260–70.

    CAS 

    Google Scholar 

  • Du MJ, Chen ZJJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361(6403):704–9.

    CAS 

    Google Scholar 

  • Zhang LX, Zhao J, Hu X, Wang CH, Jia YB, Zhu CJ, et al. A peritumorally injected immunomodulating adjuvant elicits robust and safe metalloimmunotherapy against solid tumors. Adv Mater. 2022;34(41):e2206915.

    Google Scholar 

  • Chaigne-Delalande B, Li FY, O’connor GM, Lukacs MJ, Jiang P, Zheng LX, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91.

    CAS 

    Google Scholar 

  • Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475(7357):471–6.

    CAS 

    Google Scholar 

  • Kang Y, Xu LL, Dong JR, Huang YZ, Yuan X, Li RY, et al. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev. 2023;481:215050.

    CAS 

    Google Scholar 

  • Tan HZ, Mao KR, Cong XX, Xin YB, Liu FQ, Wang JL, et al. In vivo immune adjuvant effects of CaCO3 nanoparticles through intracellular Ca2+ concentration regulation. ACS Appl Mater Interfaces. 2023;15(33):39157–66.

    CAS 

    Google Scholar 

  • Liu YN, Wei CF, Lin AG, Pan JL, Chen X, Zhu XF, et al. Responsive functionalized MoSe2 nanosystem for highly efficient synergistic therapy of breast cancer. Colloids Surf B Biointerfaces. 2020;189:110820.

    CAS 

    Google Scholar 

  • Qiang SF, Hu XC, Li RH, Wu WJ, Fang K, Li H, et al. CuS nanoparticles-loaded and cisplatin prodrug conjugated Fe(III)-MOFs for MRI-guided combination of chemotherapy and NIR-II photothermal therapy. ACS Appl Mater Interfaces. 2022;14(32):36503–14.

    CAS 

    Google Scholar 

  • Sun HP, Su JH, Meng QS, Yin Q, Chen LL, Gu WW, et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv Funct Mater. 2017;27(3):1604300.

    Google Scholar 

  • Wu R, Wang HZ, Hai L, Wang TZ, Hou M, He DG, et al. A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chin Chem Lett. 2020;31(1):189–92.

    CAS 

    Google Scholar 

  • Zhang ST, Jin LH, Liu JH, Liu Y, Zhang TQ, Zhao Y, et al. Boosting chemodynamic therapy by the synergistic effect of co-catalyze and photothermal effect triggered by the second near-infrared light. Nanomicro Lett. 2020;12(1):180.

    Google Scholar 

  • Yang GB, Wang DD, Phua SZF, Bindra AK, Qian C, Zhang R, et al. Albumin-based therapeutics capable of glutathione consumption and hydrogen peroxide generation for synergetic chemodynamic and chemotherapy of cancer. ACS Nano. 2022;16(2):2319–29.

    CAS 

    Google Scholar 

  • Chang YZ, Huang JR, Shi SJ, Xu LG, Lin H, Chen TF. Precise engineering of a Se/Te nanochaperone for reinvigorating cancer radio-immunotherapy. Adv Mater. 2023;35(36):e2212178.

    Google Scholar 

  • Wang DY, Lin SB, Li TW, Yang XH, Zhong X, Chen Q, et al. Cancer cell membrane-coated siRNA-decorated Au/MnO2 nanosensitizers for synergistically enhanced radio-immunotherapy of breast cancer. Mater Today Bio. 2024;29:101275.

    CAS 

    Google Scholar 

  • Liu Y, Zhen WY, Jin LH, Zhang ST, Sun GY, Zhang TQ, et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano. 2018;12(5):4886–93.

    CAS 

    Google Scholar 

  • Meng NQ, Xu PJ, Wen CC, Liu HH, Gao CJ, Shen XC, et al. Near-infrared-II-activatable sulfur-deficient plasmonic Bi2S3-x-Au heterostructures for photoacoustic imaging-guided ultrasound enhanced high performance phototherapy. J Colloid Interface Sci. 2023;644:437–53.

    CAS 

    Google Scholar 

  • Mo XW, Phan NM, Nguyen TL, Kim J. H2O2 self-supplying CaO2 nanoplatform induces Ca2+ overload combined with chemodynamic therapy to enhance cancer immunotherapy. ACS Appl Mater Interfaces. 2024;16(43):58337–45.

    CAS 

    Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–24.

    Google Scholar 

  • Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16(24):6139–49.

    CAS 

    Google Scholar 

  • Rasmussen K, Bleeker EJ, Baker J, Bouillard J, Fransman W, Kuhlbusch TJ, et al. A roadmap to strengthen standardisation efforts in risk governance of nanotechnology. NanoImpact. 2023;32:100483.

    CAS 

    Google Scholar 

  • Continue Reading