Vector surveillance of avian Plasmodium and West Nile virus in Culex mosquitoes from Doñana, a UNESCO World Heritage Site | Parasites & Vectors

  • Ferraguti M, Martínez-de la Puente J, Figuerola J. Ecological effects on the dynamics of West Nile virus and avian Plasmodium: the importance of mosquito communities and landscape. Viruses. 2021;13:1208.

    Google Scholar 

  • García San Miguel Rodríguez-Alarcón L, Fernández-Martínez B, Sierra Moros MJ, Vázquez A, Julián Pachés P, García Villacieros E, et al. Unprecedented increase of West Nile virus neuroinvasive disease, Spain, summer 2020. Euro Surveill. 2021;26:2002010.

    Google Scholar 

  • Centro Nacional de Epidemiología. Instituto de Salud Carlos III. CIBERESP. Informe epidemiológico sobre la situación de la fiebre del Nilo occidental en España. Año 2024. Madrid, 27 de febrero de 2025. https://cne.isciii.es/documents/d/cne/informe_renave_fno-2024

  • Figuerola J, Jiménez-Clavero MÁ, Ruíz-López MJ, Llorente F, Ruiz S, Hoefer A, et al. A one health view of the West Nile virus outbreak in Andalusia (Spain) in 2020. Emerg Microbes Infect. 2022;11:2570–8.

    Google Scholar 

  • Vázquez A, Ruiz S, Herrero L, Moreno J, Molero F, Magallanes A, et al. West Nile and Usutu viruses in mosquitoes in Spain, 2008–2009. Am J Trop Med Hyg. 2011;85:178–81.

    Google Scholar 

  • Magallanes S, Llorente F, Ruiz-López MJ, Martínez-de la Puente J, Soriguer R, Calderon J, et al. Long-term serological surveillance for West Nile and Usutu virus in horses in south-West Spain. One Health. 2023;17:100578.

    Google Scholar 

  • Magallanes S, Llorente F, Ruiz-López MJ, Martínez-de la Puente J, Ferraguti M, Gutiérrez-López R, et al. Warm winters are associated to more intense West Nile virus circulation in southern Spain. Emerg Microbes Infect. 2024;13:2348510.

    Google Scholar 

  • Martínez-de la Puente J, Ferraguti M, Ruiz S, Roiz D, Llorente F, Pérez-Ramírez E, et al. Mosquito community influences West Nile virus seroprevalence in wild birds: implications for the risk of spillover into human populations. Sci Rep. 2018;8:2599.

    Google Scholar 

  • Roiz D, Vázquez A, Ruiz S, Tenorio A, Soriguer R, Figuerola J. Evidence that passerine birds act as amplifying hosts for Usutu virus circulation. EcoHealth. 2019;16:734–42.

    Google Scholar 

  • Valkiūnas G, Iezhova TA. Keys to the avian malaria parasites. Malaria J. 2018;17:212.

    Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Res. 2009;9:1353–8.

    Google Scholar 

  • Santiago-Alarcon D, Palinauskas V, Schaefer HM. Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev Camb Philos Soc. 2012;87:928–64.

    Google Scholar 

  • Marzal A, Bensch S, Reviriego M, Balbontin J, De Lope F. Effects of malaria double infection in birds: one plus one is not two. J Evol Biol. 2008;21:979–87.

    Google Scholar 

  • Werner D, Kampen H. 4. Zoos and wildlife parks: a laboratory for the study of mosquitoborne wildlife diseases. In: Ecology of diseases transmitted by mosquitoes to wildlife. Leiden, The Netherlands: Wageningen Academic; 2022.

  • Dadam D, Robinson RA, Clements A, Peach WJ, Bennett M, Rowcliffe JM, et al. Avian malaria-mediated population decline of a widespread iconic bird species. R Soc Open Sci. 2019;6:182197.

    Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Bensch S, Roiz D, Ruiz S, Viana DS, et al. Ecological determinants of avian malaria infections: an integrative analysis at landscape, mosquito and vertebrate community levels. J Anim Ecol. 2018;87:727–40.

    Google Scholar 

  • Díez-Fernández A, Martín J, Martínez-de la Puente J, Gangoso L, López P, Soriguer R, et al. Effects of sex and sampling site on the relative proportion of pesticides in uropygial gland secretions of European Blackbirds (Turdus merula). Ibis. 2023;165:142–52.

    Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Ruiz S, Soriguer R, Figuerola J. On the study of the transmission networks of blood parasites from SW Spain: diversity of avian haemosporidians in the biting midge Culicoides circumscriptus and wild birds. Parasit Vectors. 2013;6:208.

    Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Ruiz S, Soriguer RC, Figuerola J. Landscape and mosquito community impact the avian Plasmodium infection in Culex pipiens. Science. 2024;27:109194.

    Google Scholar 

  • Bravo-Barriga D, Parreira R, Almeida AP, Calado M, Blanco-Ciudad J, Serrano-Aguilera FJ, et al. Culex pipiens as a potential vector for transmission of Dirofilaria immitis and other unclassified Filarioidea in Southwest Spain. Vet Parasitol. 2016;223:173–80.

    Google Scholar 

  • Morchón R, Bargues MD, Latorre JM, Melero-Alcíbar R, Pou-Barreto C, Mas-Coma S, et al. Haplotype H1 of Culex pipiens implicated as natural vector of Dirofilaria immitis in an endemic area of Western Spain. Vector Borne Zoonotic Dis. 2007;7:653–8.

    Google Scholar 

  • Acosta L, León-Quinto T, Bornay-Llinares FJ, Simón MA, Simón F, Morchón R. Dirofilaria immitis: a new potential pathogen for the endangered Iberian Lynx (Lynx pardinus). Int J Appl Res Vet Med. 2019;17:17–21.

    Google Scholar 

  • Martínez-de la Puente J, Ferraguti M, Jiménez-Peñuela J, Ruiz S, Martínez J, Roiz D, et al. Filarial worm circulation by mosquitoes along an urbanization gradient in southern Spain. Transbound Emerg Dis. 2019;66:1752–7.

    Google Scholar 

  • Martínez-de la Puente J, Magallanes S, González MA, Ruiz-López MJ, Soriguer RC, Caceres F, et al. The invasive Aedes albopictus in the Doñana World Heritage Site. Parasit Vectors. 2024;17:343.

    Google Scholar 

  • Becker N, Petrić D, Zgomba M, Boase C, Madon MB, Dahl C, et al. A. Mosquitoes: identification, ecology and control. Cham: Springer Nature; 2020.

  • Vázquez A, Herrero L, Negredo A, Hernández L, Sánchez-Seco MP, Tenorio A. Real time PCR assay for detection of all known lineages of West Nile virus. J Virol Methods. 2016;236:266–70.

    Google Scholar 

  • Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004;90:797–802.

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;1990:403–10.

    Google Scholar 

  • Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology. 2001;122:93–103.

    Google Scholar 

  • McLure A, O’Neill B, Mayfield H, Lau C, McPherson B. PoolTestR: an R package for estimating prevalence and regression modelling for molecular xenomonitoring and other applications with pooled samples. Environ Model Softw. 2021;145:105158.

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2024. https://www.R-project.org/

  • Muñoz J, Ruiz S, Soriguer R, Alcaide M, Viana DS, Roiz D, et al. Feeding patterns of potential West Nile virus vectors in south-west Spain. PLoS ONE. 2012;7:e39549.

    Google Scholar 

  • Ruiz-López MJ, Muñoz-Chimeno M, Figuerola J, Gavilán AM, Varona S, Cuesta I, et al. Genomic analysis of West Nile virus lineage 1 detected in mosquitoes during the 2020–2021 outbreaks in Andalusia. Spain Viruses. 2023;15:266.

    Google Scholar 

  • Garrigós M, Garrido M, Ruiz-López MJ, García-López MJ, Veiga J, Magallanes S, et al. Microbiota composition of Culex perexiguus mosquitoes during the West Nile virus outbreak in southern Spain. PLoS ONE. 2024;19:e0314001.

    Google Scholar 

  • Martínez-de la Puente J, Ruiz S, Soriguer R, Figuerola J. Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malaria J. 2013;12:109.

    Google Scholar 

  • Mora-Rubio C, Ferraguti M, Magallanes S, Bravo-Barriga D, Hernandez-Caballero I, Marzal A, et al. Unravelling the mosquito-haemosporidian parasite-bird host network in the southwestern Iberian Peninsula: insights into malaria infections, mosquito community and feeding preferences. Parasit Vectors. 2023;16:395.

    Google Scholar 

  • Garrigós M, Veiga J, Garrido M, Marín C, Recuero J, Rosales MJ, et al. Avian Plasmodium in invasive and native mosquitoes from southern Spain. Parasit Vectors. 2024;17:40.

    Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer R, et al. Avian Plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS ONE. 2013;8:e66237.

    Google Scholar 

  • Martínez-de la Puente J, Ferraguti M, Ruiz S, Roiz D, Soriguer RC, Figuerola J. Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium. Malaria J. 2016;15:589.

    Google Scholar 

  • Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, Soriguer R, Figuerola J. Plasmodium transmission differs between mosquito species and parasite lineages. Parasitology. 2020;147:441–7.

    Google Scholar 

  • Roiz D, Ruiz S, Soriguer R, Figuerola J. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasit Vectors. 2014;7:333.

    Google Scholar 

  • Muriel J, Graves JA, Gil D, Magallanes S, Salaberria C, Casal-López M, et al. Molecular characterization of avian malaria in the spotless starling (Sturnus unicolor). Parasitol Res. 2018;117:919–28.

    Google Scholar 

  • Figuerola J, Martínez-de la Puente J, Díez-Fernández A, Thomson RL, Aguirre JI, Faivre B, et al. Urbanization correlates with the prevalence and richness of blood parasites in Eurasian Blackbirds (Turdus merula). Sci Total Environ. 2024;922:171303.

    Google Scholar 

  • Montoya-Alonso JA, Morchón R, García-Rodríguez SN, Falcón-Cordón Y, Costa-Rodríguez N, Matos JI, et al. Expansion of canine heartworm in Spain. Animals. 2022;12:1268.

    Google Scholar 

  • Martínez-de la Puente J, Méndez M, Ruiz S, Godoy JA, Soriguer RC, Figuerola J. Individual identification of endangered species using mosquito blood meals: a proof-of-concept study in Iberian lynx. Parasitol Res. 2015;114:1607–10.

    Google Scholar 

  • Ferreira CA, de Pinho MV, Novo MT, Calado MM, Gonçalves LA, Belo SM, et al. First molecular identification of mosquito vectors of Dirofilaria immitis in continental Portugal. Parasit Vectors. 2015;8:139.

    Google Scholar 

  • Szentivanyi T, González LV, Klein Á, Soltész Z, Garamszegi LZ. Complementing community science with xenomonitoring: understanding the eco-epidemiology of Dirofilaria immitis infection in dogs and mosquitoes. Parasit Vectors. 2025;18:233.

    Google Scholar 

  • Continue Reading