Overnight News Digest: Science Saturday, 8/2/25

Welcome to the Overnight News Digest with a crew consisting of founder Magnifico, regular editors side pocket, maggiejean, Chitown Kev, eeff, Magnifico, annetteboardman, Besame, jck, and JeremyBloom. Alumni editors include (but not limited to) Interceptor 7, Man Oh Man (RIP), wader, Neon Vincent, palantir, Patriot Daily News Clearinghouse (RIP), ek hornbeck (RIP), rfall, ScottyUrb, Doctor RJ, BentLiberal, Oke (RIP) and jlms qkw.

OND is a regular community feature on Daily Kos, consisting of news stories from around the world, sometimes coupled with a daily theme, original research or commentary. Editors of OND impart their own presentation styles and content choices, typically publishing each day near 12:00 AM Eastern Time.  

Please feel free to share your articles and stories in the comments.

I don’t know how many of these science editions we’ve got left. The shutdown of science funding by the federal government will have an effect on the amount of science news.

Distorted Sound of the Early Universe Suggests We Are Living In a Giant Void

A new study analyzing distorted sound waves from the early universe suggests we may live in a massive cosmic void “with roughly 20% lower than the average density of matter,” writes Indranil Banik in an article for The Conversation. “Not every physicist is convinced that this is the case. But our recent paper analyzing distorted sounds from the early universe, published in the Monthly Notices of the Royal Astronomical Society, strongly backs up the idea.” Slashdot reader alternative_right shares an excerpt from the report:

My colleagues and I previously argued that the Hubble tension might be due to our location within a large void. That’s because the sparse amount of matter in the void would be gravitationally attracted to the more dense matter outside it, continuously flowing out of the void. In previous research, we showed that this flow would make it look like the local universe is expanding about 10% faster than expected. That would solve the Hubble tension. But we wanted more evidence. And we know a local void would slightly distort the relation between the BAO angular scale and the redshift due to the faster moving matter in the void and its gravitational effect on light from outside.

So in our new paper, Vasileios Kalaitzidis and I set out to test the predictions of the void model using BAO measurements collected over the last 20 years. We compared our results to models without a void under the same background expansion history. In the void model, the BAO ruler should look larger on the sky at any given redshift. And this excess should become even larger at low redshift (close distance), in line with the Hubble tension. The observations confirm this prediction. Our results suggest that a universe with a local void is about one hundred million times more likely than a cosmos without one, when using BAO measurements and assuming the universe expanded according to the standard model of cosmology informed by the CMB.

Our research shows that the ACDM model without any local void is in “3.8 sigma tension” with the BAO observations. This means the likelihood of a universe without a void fitting these data is equivalent to a fair coin landing heads 13 times in a row. By contrast, the chance of the BAO data looking the way they do in void models is equivalent to a fair coin landing heads just twice in a row. In short, these models fit the data quite well. In the future, it will be crucial to obtain more accurate BAO measurements at low redshift, where the BAO standard ruler looks larger on the sky — even more so if we are in a void. The average expansion rate so far follows directly from the age of the universe, which we can estimate from the ages of old stars in the Milky Way. A local void would not affect the age of the universe, but some proposals do affect it. These and other probes will shed more light on the Hubble crisis in cosmology.

Your sleep schedule could be making you sick, says massive new study

A global study of over 88,000 adults reveals that poor sleep habits—like going to bed inconsistently or having disrupted circadian rhythms—are tied to dramatically higher risks for dozens of diseases, including liver cirrhosis and gangrene. Contrary to common belief, sleeping more than 9 hours wasn’t found to be harmful when measured objectively, exposing flaws in previous research. Scientists now say it’s time to redefine “good sleep” to include regularity, not just duration, as biological mechanisms like inflammation may underlie these powerful sleep-disease links.

Forget the Big Bang: Gravitational waves may have really created the Universe

A team of scientists has proposed a groundbreaking new theory on the Universe’s origins, offering a fresh, radical take on the Big Bang’s early moments. Unlike the widely accepted inflationary model, which involves speculative assumptions, the new model starts with the established concept of De Sitter space, aligning with dark energy observations. The scientists believe gravitational waves—ripples in space-time—were the key to seeding the formation of galaxies and cosmic structure, eliminating the need for unknown elements.

x

Let me try to explain why it’s important to study the foundations of quantum mechanics. (1/n)

(Have to do some breathing exercises, b/c to me it’s blindingly obvious that “understanding the most important theory in physics” is something physicists should care about, but apparently opinions differ.)

— Sean Carroll (@seanmcarroll.bsky.social) 2025-07-30T16:35:19.343Z

The real-life Kryptonite found in Serbia—and why it could power the future

Deep in Serbia’s Jadar Valley, scientists discovered a mineral with an uncanny resemblance to Superman’s Kryptonite both in composition and name. Dubbed jadarite, this dull white crystal lacks the glowing green menace of its comic book counterpart but packs a punch in the real world. Rich in lithium and boron, jadarite could help supercharge the global transition to green energy.

Deep-sea fish just changed what we know about Earth’s carbon cycle

Mesopelagic fish, long overlooked in ocean chemistry, are now proven to excrete carbonate minerals much like their shallow-water counterparts—despite living in dark, high-pressure depths. Using the deep-dwelling blackbelly rosefish, researchers have demonstrated that carbonate production is consistent across ocean layers, bolstering global carbon cycle models. These findings reveal that these abundant fish play a hidden but crucial role in regulating Earth’s ocean chemistry and could reshape how we understand deep-sea contributions to climate processes.

Drones reveal 41,000-turtle nesting mega-site hidden in the Amazon

A team at the University of Florida used drones and smart modeling to accurately count over 41,000 endangered turtles nesting along the Amazon’s Guaporé River—revealing the world’s largest known turtle nesting site. Their innovative technique, combining aerial imagery with statistical correction for turtle movement, exposes major flaws in traditional counting methods and opens doors to more precise wildlife monitoring worldwide.

Reversing Alzheimer’s damage: Two cancer drugs demonstrate surprising power

In an exciting breakthrough, researchers have identified cancer drugs that might reverse the effects of Alzheimer’s disease in the brain. By analyzing gene expression in brain cells, they discovered that some FDA-approved cancer medications could reverse damage caused by Alzheimer’s.

x

On X, Masaki Nobushiro posts a recurring (and useful) drawing about how people wrongly think a 1m tsunami is a cresting wave when it’s actually a wall of water filled with dangerous and deadly debris that’s strong enough to sweep up a car.

#tsunami

— Unseen Japan (@unseenjapan.com) 2025-07-30T03:29:10.313Z

Why cold feels good: Scientists uncover the chill pathway

A newly mapped neural circuit shows how our skin senses cool temperatures and sends that info to the brain, revealing an unexpected amplifier in the spinal cord and offering insight into cold-related pain.

The 0.05% RNA Process That Makes Cancer Self-Destruct

A group of Australian scientists has uncovered a new way to fight some of the toughest cancers by targeting an overlooked cellular process called minor splicing. This tiny but vital mechanism turns out to be essential for the growth of certain tumors, especially those driven by KRAS mutations — a common but hard-to-treat culprit in cancer. By blocking minor splicing, researchers triggered DNA damage and activated the body’s own cancer-defense system, killing cancer cells while sparing healthy ones. The results in animal and human cell models are so promising that drug development is now underway, potentially paving the way for more effective and less toxic treatments across multiple cancer types.

The pandemic’s secret aftershock: Inside the gut-brain breakdown

A new global study reveals a striking post-pandemic surge in gut-brain disorders like IBS and functional dyspepsia. Researchers compared data from 2017 and 2023 and discovered sharp increases—IBS up 28% and dyspepsia nearly 44%. Those suffering from long COVID were especially vulnerable, reporting more anxiety, depression, and worse quality of life. These findings spotlight the urgent need for deeper investigation into the gut-brain axis and revised care models in a post-COVID world.

Peacock Feathers Can Be Lasers

Peacocks have a secret hidden in their brightly colored tail feathers: tiny reflective structures that can amplify light into a laser beam. After dyeing the feathers and energizing them with an external light source, researchers discovered they emitted narrow beams of yellow-green laser light. They say the study, published this month in Scientific Reports, offers the first example of a laser cavity in the animal kingdom. […]

Scientists have long known that peacock feathers also exhibit “structural color” — nature’s pigment-free way to create dazzling hues. Ordered microstructures within the feathers reflect light at specific frequencies, leading to their vivid blues and greens and iridescence. But Florida Polytechnic University physicist Nathan Dawson and his colleagues wanted to go a step further and see whether those microstructures could also function as a laser cavity. After staining the feathers with a common dye and pumping them with soft pulses of light, they used laboratory instruments to detect beams of yellow-green laser light that were too faint to see with the naked eye. They emerged from the feathers’ eyespots, at two distinct wavelengths. Surprisingly, differently colored parts of the eyespots emitted the same wavelengths of laser light, even though each region would presumably vary in its microstructure.

Just because peacock feathers emit laser light doesn’t mean the birds are somehow using this emission. But there are still ramifications, Dawson says. He suggests that looking for laser light in biomaterials could help identify arrays of regular microstructures within them. In medicine, for example, certain foreign objects — viruses with distinct geometric shapes, perhaps — could be classified and identified based on their ability to be lasers, he says. The work also demonstrates how biological materials could one day yield lasers that could be put safely into the human body to emit light for biosensing, medical imaging, and therapeutics. “I always like to think that for many technological achievements that benefit humans,” Dawson says, “some organism somewhere has already developed it through some evolutionary process.”

Early Universe’s ‘Little Red Dots’ May Be Black Hole Stars

After it began “peering into the distant universe” in 2022, NASA’s James Webb Space Telescope “has discovered a rash of ‘little red dots’,” reports Science magazine.  There’s “hundreds of them, shining within the first billion years of the 13.8-billion-year-old universe, so small and red that they defied conventional explanation.”

“Only in the past few months has a picture begun to emerge. The little red dots, astronomers say, may be an entirely new type of object: a colossal ball of bright, hot gas, larger than the Solar System, powered not by nuclear fusion, but by a black hole…”The objects, which some astronomers are calling “black hole stars,” could be a missing link in the evolution of galaxies and help explain the rapid growth of supermassive black holes that lie at their hearts. “The big breakthrough of the past 6 months is actually the realization that we can throw out all these other models we’ve been playing with before,” says astronomer Anna de Graaff of the Max Planck Institute for Astronomy… JWST couldn’t resolve the dots into a recognizable shape, which meant they must have been tiny — less than 2% of the diameter of the Milky Way. “It was a mystery … as to why they were so spatially compact,” says Caitlin Casey of the University of Texas at Austin. An impossibly dense packing of stars would be needed to explain their brightness. “I was excited,” Casey says…

For Mitch Begelman, a theoretical astrophysicist at the University of Colorado Boulder, the observations are a vindication. Earlier this month, he and a colleague posted a preprint on arXiv reviving a scenario for the formation of hypothetical “quasi-stars” that he and others had proposed 20 years ago.  The first generation of stars, they calculated, could have grown to colossal size in the early universe, which was made up almost entirely of hydrogen, the raw material of stars. When a giant star ran out of fuel, they said, its core would have collapsed into a black hole, but the outer envelope of hydrogen was so dense it survived the blast, enclosing the newborn black hole. As the black hole chewed at its shroud of gas, the entire system glowed as a quasi-star larger than the Solar System. “That’s what the quasi-star envelope is doing, it’s force-feeding the black hole by pushing matter into it,” Begelman says.

Given how common little red dots appear to be in the early universe, theorists are beginning to wonder whether this giant-ball-of-gas phase is an essential part of black hole growth and the evolution of galaxies. “We’re probably looking at kind of a new phase of black hole growth that we didn’t know about before,” de Graaff says.
“If the red dots do turn out to be black hole stars, it will be precisely the sort of breakthrough expected from JWST — and the kind of discovery astronomers live for.”

Researchers Map Where Solar Energy Delivers the Biggest Climate Payoff

A Rutgers-led study using advanced computational modeling reveals that expanding solar power by just 15% could reduce U.S. carbon emissions by over 8.5 million metric tons annually, with the greatest benefits concentrated in specific regions like California, Texas, and the Southwest. The study has been published in Science Advances. From the report:

The study quantified both immediate and delayed emissions reductions resulting from added solar generation. For example, the researchers found that in California, a 15% increase in solar power at noon was associated with a reduction of 147.18 metric tons of CO2 in the region in the first hour and 16.08 metric tons eight hours later.

The researchers said their methods provide a more nuanced understanding of system-level impacts from solar expansion than previous studies, pinpointing where the benefits of increased solar energy adoption could best be realized. In some areas, such as California, Florida, the mid-Atlantic, the Midwest, Texas and the Southwest, small increases in solar were estimated to deliver large CO2 reductions, while in others, such as New England, the central U.S., and Tennessee, impacts were found to be minimal — even at much larger increases in solar generation.

In addition, the researchers said their study demonstrates the significant spillover effects solar adoption has on neighboring regions, highlighting the value of coordinated clean energy efforts. For example, a 15% increase in solar capacity in California was associated with a reduction of 913 and 1,942 metric tons of CO2 emissions per day in the northwest and southwest regions, respectively. “It was rewarding to see how advanced computational modeling can uncover not just the immediate, but also the delayed and far-reaching spillover effects of solar energy adoption,” said the lead author Arpita Biswas, an assistant professor with the Department of Computer Science at the Rutgers School of Arts and Sciences. “From a computer science perspective, this study demonstrates the power of harnessing large-scale, high-resolution energy data to generate actionable insights. For policymakers and investors, it offers a roadmap for targeting solar investments where emissions reductions are most impactful and where solar energy infrastructure can yield the highest returns.”

The hidden climate battle between forests and the ocean

Between 2003 and 2021, Earth saw a net boost in photosynthesis, mainly thanks to land plants thriving in warming, wetter conditions—especially in temperate and high-latitude regions. Meanwhile, ocean algae struggled in increasingly stratified and nutrient-poor tropical waters. Scientists tracked this global energy shift using satellite data, revealing that land ecosystems not only added more biomass but also helped stabilize climate by capturing more carbon.

Einstein was wrong: MIT just settled a 100-year quantum debate

MIT physicists have performed an idealized version of one of the most famous experiments in quantum physics. Their findings demonstrate, with atomic-level precision, the dual yet evasive nature of light. They also happen to confirm that Albert Einstein was wrong about this particular quantum scenario.

The experiment in question is the double-slit experiment, which was first performed in 1801 by the British scholar Thomas Young to show how light behaves as a wave. Today, with the formulation of quantum mechanics, the double-slit experiment is now known for its surprisingly simple demonstration of a head-scratching reality: that light exists as both a particle and a wave. Stranger still, this duality cannot be simultaneously observed. Seeing light in the form of particles instantly obscures its wave-like nature, and vice versa.

The original experiment involved shining a beam of light through two parallel slits in a screen and observing the pattern that formed on a second, faraway screen. One might expect to see two overlapping spots of light, which would imply that light exists as particles, a.k.a. photons, like paintballs that follow a direct path. But instead, the light produces alternating bright and dark stripes on the screen, in an interference pattern similar to what happens when two ripples in a pond meet. This suggests light behaves as a wave. Even weirder, when one tries to measure which slit the light is traveling through, the light suddenly behaves as particles and the interference pattern disappears.

What happens when light smashes into itself? Scientists just found out

Physicists have discovered that when beams of light interact at the quantum level, they can generate ghost-like particles that briefly emerge from nothing and affect real matter. This rare phenomenon, known as light-on-light scattering, challenges the classical idea that light waves pass through each other untouched.

This spectrometer is smaller than a pixel, and it sees what we can’t

Researchers have successfully demonstrated a spectrometer that is orders of magnitude smaller than current technologies and can accurately measure wavelengths of light from ultraviolet to the near-infrared. The technology makes it possible to create hand-held spectroscopy devices and holds promise for the development of devices that incorporate an array of the new sensors to serve as next-generation imaging spectrometers.

“Spectrometers are critical tools for helping us understand the chemical and physical properties of various materials based on how light changes when it interacts with those materials,” says Brendan O’Connor, corresponding author of a paper on the work and a professor of mechanical and aerospace engineering at North Carolina State University. “They are used in applications that range from manufacturing to biomedical diagnostics. However, the smallest spectrometers on the market are still fairly bulky.

Hidden gene in leukemia virus could revolutionize HIV treatment

Scientists in Japan have discovered a genetic “silencer” within the HTLV-1 virus that helps it stay hidden in the body, evading the immune system for decades. This silencer element essentially turns the virus off, preventing it from triggering symptoms in most carriers. Incredibly, when this silencer was added to HIV, it made that virus less active too — hinting at a revolutionary new strategy for managing not just HTLV-1 but other deadly retroviruses as well. The discovery opens the door to turning the virus’s own stealth tactics against it in future treatments.

Scientists just solved the 9-million-year mystery of where potatoes came from

About 9 million years ago, a wild interspecies fling between tomato-like plants and potato relatives in South America gave rise to one of the world’s most important crops: the potato. Scientists have now traced its roots to a rare natural hybridization that created the tuber, a storage organ that allowed the plant to survive harsh Andean environments and spread rapidly.

700,000 years ahead of their teeth: The carbs that made us human

Long before evolution equipped them with the right teeth, early humans began eating tough grasses and starchy underground plants—foods rich in energy but hard to chew. A new study reveals that this bold dietary shift happened 700,000 years before the ideal dental traits evolved to handle it.

Did drunk apes help us evolve? New clues reveal why we digest alcohol so well

Ape behavior just got a name upgrade — “scrumping” — and it might help explain why humans can handle alcohol so well. Researchers discovered that African apes regularly eat overripe, fermented fruit off the forest floor, and this habit may have driven key evolutionary adaptations. By naming and classifying this behavior, scientists are hoping to better understand how alcohol tolerance evolved in our ancestors — and how it might have helped shape everything from safety in the trees to social drinking rituals.

x

If you want a weird but true fact to talk about:

Dexter Holland, lead singer of The Offspring, was instrumental in this. His doctorial thesis in molecular biology was sequencing mRNA in HIV. The paper was also heavily cited in creating the COVID-19 vaccine.

— Darryl Mott (@gamerstavernshow.com) 2025-08-01T13:53:42.445Z

From the quoted post:

It feels like we should be making a bigger deal of “we actually did in fact find a cure for AIDS”

Continue Reading