A manifesto for Alzheimer’s disease drug discovery in the era of disease-modifying therapies | Molecular Neurodegeneration

  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–90. https://doi.org/10.1016/s0006-291x(84)80190-4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alzheimer A. Uber eigenartige Erkrankung der Hirnrinde. All Z Psychiatr. 1907;64:146–8.

    Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci. 1986;83:4913–7. https://doi.org/10.1073/pnas.83.13.4913.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jack CR Jr, Andrews JS, Beach TG, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement. 2024;20:5143–69. https://doi.org/10.1002/alz.13859.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8. https://doi.org/10.1016/0165-6147(91)90609-v.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–98. https://doi.org/10.1016/0896-6273(91)90052-2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21:306–18. https://doi.org/10.1038/s41573-022-00391-w.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dyck CHV, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s disease. N Engl Journal of Medicine. 2023;388:9–21. https://doi.org/10.1056/NEJMoa2212948.

    Article 

    Google Scholar 

  • Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330:512–27. https://doi.org/10.1001/jama.2023.13239.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah NS, Vidal JS, Masaki K, et al. Midlife blood pressure, plasma β-amyloid, and the risk for Alzheimer disease: the Honolulu Asia aging study. Hypertension. 2012;59:780–6. https://doi.org/10.1161/hypertensionaha.111.178962.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bellenguez C, Küçükali F, Jansen IE, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36. https://doi.org/10.1038/s41588-022-01024-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris MC, Evans DA, Bienias JL, et al. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol. 2003;60:194–200. https://doi.org/10.1001/archneur.60.2.194.

    Article 
    PubMed 

    Google Scholar 

  • Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62. https://doi.org/10.1016/j.jalz.2018.02.018.

    Article 
    PubMed 

    Google Scholar 

  • U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation. Early Alzheimer’s disease: developing drugs for treatment, guidelines for industry. 2018.

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225:1168–70. https://doi.org/10.1126/science.6474172.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59. https://doi.org/10.1007/bf00308809.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800. https://doi.org/10.1212/wnl.58.12.1791.

    Article 
    PubMed 

    Google Scholar 

  • Vogel JW, Young AL, Oxtoby NP, et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med. 2021;27:871–81. https://doi.org/10.1038/s41591-021-01309-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Budd Haeberlein S, Aisen PS, Barkhof F, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9:197–210. https://doi.org/10.14283/jpad.2022.30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bateman RJ, Munsell LY, Morris JC, et al. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med. 2006;12:856–61. https://doi.org/10.1038/nm1438.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinkmalm G, Hong W, Wang Z, et al. Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer’s brain. Brain. 2019;142:1441–57. https://doi.org/10.1093/brain/awz066.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petit D, Fernández SG, Zoltowska KM, et al. Aβ profiles generated by Alzheimer’s disease causing PSEN1 variants determine the pathogenicity of the mutation and predict age at disease onset. Mol Psychiatry. 2022;27:2821–32. https://doi.org/10.1038/s41380-022-01518-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schultz SA, Liu L, Schultz AP, et al. γ-Secretase activity, clinical features, and biomarkers of autosomal dominant Alzheimer’s disease: cross-sectional and longitudinal analysis of the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurol. 2024;23:913–24. https://doi.org/10.1016/s1474-4422(24)00236-9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walsh DM, Minogue AM, Sala Frigerio C, et al. The APP family of proteins: similarities and differences. Biochem Soc Trans. 2007;35:416–20. https://doi.org/10.1042/bst0350416.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hellstrand E, Boland B, Walsh DM, Linse S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci. 2010;1:13–8. https://doi.org/10.1021/cn900015v.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Linse S. Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr Opin Struct Biol. 2021;70:87–98. https://doi.org/10.1016/j.sbi.2021.05.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan Jin IG, Yun-Ju Cheng, Ilke Tunali, Sergey Shcherbinin, David Perahia, Krista Phipps, Kevin Biglan, Mark Mintun, Matan Dabora, Miroslaw Brys, editor Safety and Amyloid Plaque Reduction Effects of Remternetug in Patients with Alzheimer’s Disease: Interim Analysis from a Phase 1 Study. Gothernburg: 2023 AD/PD Conference; 2023.

  • Demattos RB, Lu J, Tang Y, et al. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76:908–20. https://doi.org/10.1016/j.neuron.2012.10.029.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92. https://doi.org/10.1016/j.jalz.2011.03.003.

    Article 
    PubMed 

    Google Scholar 

  • Hampel H, Elhage A, Cho M, et al. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain. 2023;146:4414–24. https://doi.org/10.1093/brain/awad188.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cummings J, Apostolova L, Rabinovici GD, et al. Lecanemab: appropriate use recommendations. J Prev Alzheimers Dis. 2023;10:362–77. https://doi.org/10.14283/jpad.2023.30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luka Kulic FA, Gregory Klein, Carsten Hofmann, Stella Yilmaz, João A. Abrantes, Denise Sickert, Maddalena Marchesi, Jakub Wojtowicz, Ruth Croney, David Agnew, Silke Ahlers, Paul Delmar, Hanno Svoboda, Iris Wiesel, editor Latest interim results from the Brainshuttle AD study, a phase 1b/2a study of trontinemab in people with Alzheimer’s disease. J Prev Alzheimer’s Dis. 2025;12(Suppl 1):Abstract LB02.

  • Bateman RJ, Smith J, Donohue MC, et al. Two phase 3 trials of gantenerumab in early Alzheimer’s disease. N Engl J Med. 2023;389:1862–76. https://doi.org/10.1056/NEJMoa2304430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60. https://doi.org/10.1016/j.neuron.2013.10.061.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weber F, Bohrmann B, Niewoehner J, et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 2018;22:149–62. https://doi.org/10.1016/j.celrep.2017.12.019.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pizzo ME, Plowey ED, Khoury N, et al. Engineering anti-amyloid antibodies with transferrin receptor targeting improves safety and brain biodistribution. bioRxiv 2024:2024.2007.2026.604664. https://doi.org/10.1101/2024.07.26.604664.

  • Wang YJ, Gao CY, Yang M, et al. Intramuscular delivery of a single chain antibody gene prevents brain Aβ deposition and cognitive impairment in a mouse model of Alzheimer’s disease. Brain Behav Immun. 2010;24:1281–93. https://doi.org/10.1016/j.bbi.2010.05.010.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shimada M, Abe S, Takahashi T, et al. Prophylaxis and treatment of Alzheimer’s disease by delivery of an adeno-associated virus encoding a monoclonal antibody targeting the amyloid Beta protein. PLoS One. 2013;8: e57606. https://doi.org/10.1371/journal.pone.0057606.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Senior K. Dosing in phase II trial of Alzheimer’s vaccine suspended. Lancet Neurol. 2002;1:3. https://doi.org/10.1016/s1474-4422(02)00023-6.

    Article 
    PubMed 

    Google Scholar 

  • Schenk D. Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci. 2002;3:824–8. https://doi.org/10.1038/nrn938.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005;64:1553–62. https://doi.org/10.1212/01.Wnl.0000159740.16984.3c.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron. 2003;38:547–54. https://doi.org/10.1016/s0896-6273(03)00294-0.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2003;9:448–52. https://doi.org/10.1038/nm840.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nicoll JAR, Buckland GR, Harrison CH, et al. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain. 2019;142:2113–26. https://doi.org/10.1093/brain/awz142.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDade E, Voytyuk I, Aisen P, et al. The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol. 2021;17:703–14. https://doi.org/10.1038/s41582-021-00545-1.

    Article 
    PubMed 

    Google Scholar 

  • Sperling R, Henley D, Aisen PS, et al. Findings of efficacy, safety, and biomarker outcomes of atabecestat in preclinical Alzheimer disease: a truncated randomized phase 2b/3 clinical trial. JAMA Neurol. 2021;78:293–301. https://doi.org/10.1001/jamaneurol.2020.4857.

    Article 
    PubMed 

    Google Scholar 

  • Nordvall G, Lundkvist J, Sandin J. Gamma-secretase modulators: a promising route for the treatment of Alzheimer’s disease. Front Mol Neurosci. 2023;16: 1279740. https://doi.org/10.3389/fnmol.2023.1279740.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaz M, Silvestre S. Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol. 2020;887: 173554. https://doi.org/10.1016/j.ejphar.2020.173554.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wessels AM, Tariot PN, Zimmer JA, et al. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol. 2020;77:199–209. https://doi.org/10.1001/jamaneurol.2019.3988.

    Article 
    PubMed 

    Google Scholar 

  • Henley D, Raghavan N, Sperling R, et al. Preliminary results of a trial of atabecestat in preclinical Alzheimer’s disease. N Engl J Med. 2019;380:1483–5. https://doi.org/10.1056/NEJMc1813435.

    Article 
    PubMed 

    Google Scholar 

  • Egan MF, Kost J, Voss T, et al. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med. 2019;380:1408–20. https://doi.org/10.1056/NEJMoa1812840.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cebers G, Alexander RC, Haeberlein SB, et al. AZD3293: pharmacokinetic and pharmacodynamic effects in healthy subjects and patients with Alzheimer’s disease. Journal of Alzheimer’s Disease. 2017;55:1039–53. https://doi.org/10.3233/jad-160701.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kennedy ME, Stamford AW, Chen X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med. 2016;8:363ra150. https://doi.org/10.1126/scitranslmed.aad9704.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Egan MF, Kost J, Tariot PN, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2018;378:1691–703. https://doi.org/10.1056/NEJMoa1706441.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013;369:341–50. https://doi.org/10.1056/NEJMoa1210951.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coric V, Salloway S, van Dyck CH, et al. Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol. 2015;72:1324–33. https://doi.org/10.1001/jamaneurol.2015.0607.

    Article 
    PubMed 

    Google Scholar 

  • Hou P, Zielonka M, Serneels L, et al. The γ-secretase substrate proteome and its role in cell signaling regulation. Mol Cell. 2023;83:4106-4122.e4110. https://doi.org/10.1016/j.molcel.2023.10.029.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Strooper B, Annaert W, Cupers P, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398:518–22. https://doi.org/10.1038/19083.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou R, Yang G, Guo X, et al. Recognition of the amyloid precursor protein by human γ-secretase. Science. 2019;363:363. https://doi.org/10.1126/science.aaw0930.

    Article 
    CAS 

    Google Scholar 

  • De Strooper B, Karran E. New precision medicine avenues to the prevention of Alzheimer’s disease from insights into the structure and function of γ-secretases. EMBO J. 2024;43:887–903. https://doi.org/10.1038/s44318-024-00057-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasri A, Camporesi E, Gkanatsiou E, et al. Amyloid-β peptide signature associated with cerebral amyloid angiopathy in familial Alzheimer’s disease with APPdup and Down syndrome. Acta Neuropathol. 2024;148:8. https://doi.org/10.1007/s00401-024-02756-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lott APD, Alam M, Cantrill C, Croney R, Alcaraz F, Rodríguez Sarmiento RM, Lindemann L, Mueller L, Mueggler T, Vardar T, Tortelli R, Sturm S, Gerlach I, editor RG6289, a new γ-secretase modulator for the treatment of Alzheimer’s disease: Dose selection for a Phase II trial based on population PK/PD modeling. J Prev Alzheimer’s Dis. 2023;10(Suppl 1):Abstract PO17.

  • Cohen S, Ducharme S, Brosch JR, et al. Single ascending dose results from an ongoing phase 1 study of mivelsiran (ALN-APP), the first investigational RNA interference therapeutic targeting amyloid precursor protein for Alzheimer’s disease. Alzheimer’s and Dementia. 2024;20:(TBD).

    Google Scholar 

  • Abushakra S, Porsteinsson AP, Sabbagh M, et al. APOLLOE4 phase 3 study of oral ALZ-801/valiltramiprosate in APOE ε4/ε4 homozygotes with early Alzheimer’s disease: trial design and baseline characteristics. Alzheimers Dement (N Y). 2024;10:e12498. https://doi.org/10.1002/trc2.12498.

    Article 
    PubMed 

    Google Scholar 

  • Zhao Z, Liu Y, Ruan S, Hu Y. Current anti-amyloid-β therapy for Alzheimer’s disease treatment: from clinical research to nanomedicine. Int J Nanomedicine. 2023;18:7825–45. https://doi.org/10.2147/ijn.S444115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jawhar S, Wirths O, Bayer TA. Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J Biol Chem. 2011;286:38825–32. https://doi.org/10.1074/jbc.R111.288308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bayer TA. Pyroglutamate Aβ cascade as drug target in Alzheimer’s disease. Mol Psychiatry. 2022;27:1880–5. https://doi.org/10.1038/s41380-021-01409-2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hartlage-Rübsamen M, Bluhm A, Piechotta A, et al. Immunohistochemical evidence from APP-transgenic mice for glutaminyl cyclase as drug target to diminish pE-abeta formation. Molecules 2018;23. https://doi.org/10.3390/molecules23040924.

  • Hoffmann T, Meyer A, Heiser U, et al. Glutaminyl cyclase inhibitor PQ912 improves cognition in mouse models of Alzheimer’s disease—studies on relation to effective target occupancy. J Pharmacol Exp Ther. 2017;362:119–30. https://doi.org/10.1124/jpet.117.240614.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vijverberg EGB, Axelsen TM, Bihlet AR, et al. Rationale and study design of a randomized, placebo-controlled, double-blind phase 2b trial to evaluate efficacy, safety, and tolerability of an oral glutaminyl cyclase inhibitor varoglutamstat (PQ912) in study participants with MCI and mild AD-VIVIAD. Alzheimers Res Ther. 2021;13:142. https://doi.org/10.1186/s13195-021-00882-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vivoryon Therapeutics N.V. Provides update on VIVIAD phase 2b study of varoglutamstat in early Alzheimer’s disease [press release]. 2024. https://www.vivoryon.com/vivoryon-therapeutics-n-v-provides-update-on-viviad-phase-2b-study-of-varoglutamstat-in-earlyalzheimers-disease/.

  • Hu Y, Cho M, Sachdev P, et al. Fluid biomarkers in the context of amyloid-targeting disease-modifying treatments in Alzheimer’s disease. Med. 2024;5:1206–26. https://doi.org/10.1016/j.medj.2024.08.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mueggler T, Portron A, Poirier A, et al. Pharmacodynamic effect of a new γ-secretase modulator, RG6289, on CSF amyloid-β peptides in a randomized phase I study. Alzheimers Dement. 2024;20:e095213. https://doi.org/10.1002/alz.095213.

    Article 

    Google Scholar 

  • Noguchi-Shinohara M, Shuta K, Murakami H, et al. Lecanemab-associated amyloid-β protofibril in cerebrospinal fluid correlates with biomarkers of neurodegeneration in Alzheimer’s disease. Ann Neurol. 2025;97:993–1006. https://doi.org/10.1002/ana.27175.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang T, Dang Y, Ostaszewski B, et al. Target engagement in an Alzheimer trial: Crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Ann Neurol. 2019;86:215–24. https://doi.org/10.1002/ana.25513.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • FDA clears first blood test used in diagnosing alzheimer’s disease [press release]. 2025. https://www.fda.gov/news-events/press-announcements/fda-clears-first-blood-test-used-diagnosing-alzheimers-disease.

  • Feaster HT, Sundell K, Hyland M, et al. ALTITUDE-AD: use of a validated plasma pTau217 assay to screen potential participants in an ongoing randomized, double-blind, placebo-controlled phase 2 study of sabirnetug for early Alzheimer’s disease (S15.008). Neurology. 2025;104:3870. https://doi.org/10.1212/WNL.0000000000211295.

    Article 

    Google Scholar 

  • Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384:1691–704. https://doi.org/10.1056/NEJMoa2100708.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arboleda-Velasquez JF, Lopera F, O’Hare M, et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019;25:1680–3. https://doi.org/10.1038/s41591-019-0611-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopera F, Marino C, Chandrahas AS, et al. Resilience to autosomal dominant Alzheimer’s disease in a Reelin-COLBOS heterozygous man. Nat Med. 2023;29:1243–52. https://doi.org/10.1038/s41591-023-02318-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019;99:912–28. https://doi.org/10.1038/s41374-019-0197-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133:665–704. https://doi.org/10.1007/s00401-017-1707-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanmert D, Cantlon A, Muratore CR, et al. C-terminally truncated forms of tau, but not full-length tau or its C-terminal fragments, are released from neurons independently of cell death. J Neurosci. 2015;35:10851–65. https://doi.org/10.1523/jneurosci.0387-15.2015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato C, Barthélemy NR, Mawuenyega KG, et al. Tau kinetics in neurons and the human central nervous system. Neuron. 2018;97:1284-1298.e1287. https://doi.org/10.1016/j.neuron.2018.02.015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ondrejcak T, Klyubin I, Hu NW, et al. Tau and amyloid β protein in patient-derived aqueous brain extracts act concomitantly to disrupt long-term potentiation in vivo. J Neurosci. 2023;43:5870–9. https://doi.org/10.1523/jneurosci.0082-23.2023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu NW, Ondrejcak T, Klyubin I, et al. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun. 2024;6:fcae333. https://doi.org/10.1093/braincomms/fcae333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeVos SL, Goncharoff DK, Chen G, et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci. 2013;33:12887–97. https://doi.org/10.1523/jneurosci.2107-13.2013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao E, Chang CW, Li Z, et al. TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Sci Transl Med. 2022;14: eabm5527. https://doi.org/10.1126/scitranslmed.abm5527.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science. 2021;371:371. https://doi.org/10.1126/science.abb8255.

    Article 
    CAS 

    Google Scholar 

  • Tai C, Chang CW, Yu GQ, et al. Tau reduction prevents key features of autism in mouse models. Neuron. 2020;106:421-437.e411. https://doi.org/10.1016/j.neuron.2020.01.038.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16:109–20. https://doi.org/10.1038/nrn3887.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci. 2016;17:251–60. https://doi.org/10.1038/nrn.2016.13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shulman M, Kong J, O’Gorman J, et al. TANGO: a placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer’s disease. Nat Aging. 2023;3:1591–601. https://doi.org/10.1038/s43587-023-00523-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monteiro C, Toth B, Brunstein F, et al. Randomized phase II study of the safety and efficacy of semorinemab in participants with mild-to-moderate Alzheimer disease: lauriet. Neurology. 2023;101:e1391–401. https://doi.org/10.1212/wnl.0000000000207663.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleisher AS, Munsie LM, Perahia DGS, et al. Assessment of efficacy and safety of zagotenemab: results from PERISCOPE-ALZ, a phase 2 study in early symptomatic Alzheimer disease. Neurology. 2024;102: e208061. https://doi.org/10.1212/wnl.0000000000208061.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teng E, Manser PT, Pickthorn K, et al. Safety and efficacy of semorinemab in individuals with prodromal to mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2022;79:758–67. https://doi.org/10.1001/jamaneurol.2022.1375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou X, Zou H, Lutz MW, et al. Assessing tilavonemab efficacy in early Alzheimer’s disease via longitudinal item response theory modeling. Alzheimers Dement (N Y). 2024;10:e12471. https://doi.org/10.1002/trc2.12471.

    Article 
    PubMed 

    Google Scholar 

  • Chen Z, Mengel D, Keshavan A, et al. Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer’s disease. Alzheimers Dement. 2019;15:487–96. https://doi.org/10.1016/j.jalz.2018.09.010.

    Article 
    PubMed 

    Google Scholar 

  • Horie K, Barthélemy NR, Sato C, Bateman RJ. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain. 2021;144:515–27. https://doi.org/10.1093/brain/awaa373.

    Article 
    PubMed 

    Google Scholar 

  • Horie K, Salvadó G, Barthélemy NR, et al. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat Med. 2023;29:1954–63. https://doi.org/10.1038/s41591-023-02443-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barton ME. editor Results from TOGETHER, a Phase II study of bepranemab in prodromal–mild AD. J Prev Alzheimer’s Dis. 2025;12(Suppl 1):Abstract LBS3.

  • Zhou J, Rawal S, Yagi T, et al. E2814: an anti-tau therapy engages its CNS target and affects the downstream tangle-specific biomarker MTBR-tau243 in dominantly inherited Alzheimer’s disease. Alzheimers Dement. 2023;19:e082771. https://doi.org/10.1002/alz.082771.

    Article 

    Google Scholar 

  • Wildsmith K. editor Anti-tau therapeutic antibody, E2814, reduces early and late tau pathology biomarkers in patients with DIAD. J Prev Alzheimer’s Dis. 2025;12(Suppl 1):Abstract OC04.

  • Biundo F, Del Prete D, Zhang H, Arancio O, D’Adamio L. A role for tau in learning, memory and synaptic plasticity. Sci Rep. 2018;8:3184. https://doi.org/10.1038/s41598-018-21596-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi S, Liu Q, Wang X, et al. Tau modulates Schwann cell proliferation, migration and differentiation following peripheral nerve injury. J Cell Sci. 2019;132:132. https://doi.org/10.1242/jcs.222059.

    Article 
    CAS 

    Google Scholar 

  • Ikegami S, Harada A, Hirokawa N. Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci Lett. 2000;279:129–32. https://doi.org/10.1016/s0304-3940(99)00964-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wegmann S, DeVos SL, Zeitler B, et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Science Advances. 2021;7:eabe1611. https://doi.org/10.1126/sciadv.abe1611.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards AL, Collins JA, Junge C, et al. Exploratory tau biomarker results from a multiple ascending-dose study of BIIB080 in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2023;80:1344–52. https://doi.org/10.1001/jamaneurol.2023.3861.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mummery CJ, Börjesson-Hanson A, Blackburn DJ, et al. Tau-targeting antisense oligonucleotide MAPT(Rx) in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat Med. 2023;29:1437–47. https://doi.org/10.1038/s41591-023-02326-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziogas N, Wu S, Li Y, et al. Exploratory clinical outcomes from the BIIB080 Phase 1b multiple ascending dose and long term extension study in mild Alzheimer’s disease. J Prev Alzheimer’s Dis. 2023;10(Suppl 1):Abstract LB09.

  • Barker SJ, Thayer MB, Kim C, et al. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier. Sci Transl Med. 2024;16: eadi2245. https://doi.org/10.1126/scitranslmed.adi2245.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sela T, Mansø M, Siegel M, et al. Diligent design enables antibody-ASO conjugates with optimal pharmacokinetic properties. Bioconjug Chem. 2023;34:2096–111. https://doi.org/10.1021/acs.bioconjchem.3c00393.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khare P, Edgecomb SX, Hamadani CM, Tanner EE, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev. 2023;197:114861. https://doi.org/10.1016/j.addr.2023.114861.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19:673–94. https://doi.org/10.1038/s41573-020-0075-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasso JM, Tenchov R, Wang D, et al. Molecular glues: the adhesive connecting targeted protein degradation to the clinic. Biochemistry. 2023;62:601–23. https://doi.org/10.1021/acs.biochem.2c00245.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lemaitre T, Cornu M, Schwalen F, et al. Molecular glue degraders: exciting opportunities for novel drug discovery. Expert Opin Drug Discov. 2024;19:433–49. https://doi.org/10.1080/17460441.2024.2306845.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mullard A. Protein degraders push into novel target space. Nat Rev Drug Discov. 2024;23:799–802. https://doi.org/10.1038/d41573-024-00170-9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging targeted protein degradation approaches for advanced druggable strategies. Molecules 2023;28. https://doi.org/10.3390/molecules28104014.

  • Pliatsika D, Blatter C, Riedl R. Targeted protein degradation: current molecular targets, localization, and strategies. Drug Discovery Today. 2024;29: 104178. https://doi.org/10.1016/j.drudis.2024.104178.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol. 2014;426:1736–52. https://doi.org/10.1016/j.jmb.2014.01.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu Y, Shan X, Yuzwa SA, Vocadlo DJ. The emerging link between O-GlcNAc and Alzheimer disease. J Biol Chem. 2014;289:34472–81. https://doi.org/10.1074/jbc.R114.601351.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastings NB, Wang X, Song L, et al. Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol Neurodegener. 2017;12:39. https://doi.org/10.1186/s13024-017-0181-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rostgaard N, Jul PH, Garmer M, Volbracht C. Increasing O-GlcNAcylation attenuates tau hyperphosphorylation and behavioral impairment in rTg4510 tauopathy mice. JIN 2023;22. https://doi.org/10.31083/j.jin2205135.

  • Yuzwa SA, Shan X, Jones BA, et al. Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol Neurodegener. 2014;9: 42. https://doi.org/10.1186/1750-1326-9-42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham DL, Gray AJ, Joyce JA, et al. Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology. 2014;79:307–13. https://doi.org/10.1016/j.neuropharm.2013.11.025.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fleisher A, editor. PROSPECT-ALZ: results of the phase 2 study of ceperognastat, an orally available o-linked n-acetyl glucosaminidase inhibitor for the treatment of early symptomatic Alzheimer’s disease. CTAD; 2024.

  • Gonzalez-Rellan MJ, Fondevila MF, Dieguez C, Nogueiras R. O-GlcNAcylation: a sweet hub in the regulation of glucose metabolism in health and disease. Front Endocrinol (Lausanne). 2022;13:873513. https://doi.org/10.3389/fendo.2022.873513.

    Article 
    PubMed 

    Google Scholar 

  • Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65. https://doi.org/10.1038/nrm.2017.22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvadó G, Horie K, Barthélemy NR, et al. Disease staging of Alzheimer’s disease using a CSF-based biomarker model. Nat Aging. 2024;4:694–708. https://doi.org/10.1038/s43587-024-00599-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leuzy A, Raket LL, Villemagne VL, et al. Harmonizing tau positron emission tomography in Alzheimer’s disease: the CenTauR scale and the joint propagation model. Alzheimers Dement. 2024;20:5833–48. https://doi.org/10.1002/alz.13908.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabinovici GD, Knopman DS, Arbizu J, et al. Updated appropriate use criteria for amyloid and tau PET: a report from the Alzheimer’s Association and Society for nuclear medicine and molecular imaging workgroup. Alzheimers Dement. 2025;21: e14338. https://doi.org/10.1002/alz.14338.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horie K, Li Y, Barthélemy NR, et al. Change in cerebrospinal fluid tau microtubule binding region detects symptom onset, cognitive decline, tangles, and atrophy in dominantly inherited Alzheimer’s disease. Ann Neurol. 2023;93:1158–72. https://doi.org/10.1002/ana.26620.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horie K, Salvadó G, Koppisetti RK, et al. Plasma MTBR-tau243 biomarker identifies tau tangle pathology in Alzheimer’s disease. Nat Med. 2025. https://doi.org/10.1038/s41591-025-03617-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Florian H, Wang D, Arnold SE, et al. Tilavonemab in early Alzheimer’s disease: results from a phase 2, randomized, double-blind study. Brain. 2023;146:2275–84. https://doi.org/10.1093/brain/awad024.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uéda K, Fukushima H, Masliah E, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:11282–6. https://doi.org/10.1073/pnas.90.23.11282.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer’s disease. Alzheimer’s Research & Therapy. 2022;14:201. https://doi.org/10.1186/s13195-022-01150-0.

    Article 
    CAS 

    Google Scholar 

  • Spina S, La Joie R, Petersen C, et al. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain. 2021;144:2186–98. https://doi.org/10.1093/brain/awab099.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cairns NJ, Perrin RJ, Franklin EE, et al. Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN). Neuropathology. 2015;35:390–400. https://doi.org/10.1111/neup.12205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32. https://doi.org/10.1186/s13024-019-0333-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lippa CF, Schmidt ML, Lee VM, Trojanowski JQ. Antibodies to alpha-synuclein detect Lewy bodies in many Down’s syndrome brains with Alzheimer’s disease. Ann Neurol. 1999;45:353–7. https://doi.org/10.1002/1531-8249(199903)45:3%3c353::aid-ana11%3e3.0.co;2-4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marui W, Iseki E, Uéda K, Kosaka K. Occurrence of human alpha-synuclein immunoreactive neurons with neurofibrillary tangle formation in the limbic areas of patients with Alzheimer’s disease. J Neurol Sci. 2000;174:81–4. https://doi.org/10.1016/s0022-510x(99)00327-5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quadalti C, Palmqvist S, Hall S, et al. Clinical effects of Lewy body pathology in cognitively impaired individuals. Nat Med. 2023;29:1964–70. https://doi.org/10.1038/s41591-023-02449-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraser K, JC, Brown R, Edwards A, Ferber K, Rubel C, Shulman M, Graham D, editors. Distribution of alpha-synuclein co-pathology in mild cognitive impairment (MCI), mild Alzheimer’s disease, and progressive supranuclear palsy clinical trial cohorts. Lisbon: AD/PD; 2024.

  • Majbour NK, Chiasserini D, Vaikath NN, et al. Increased levels of CSF total but not oligomeric or phosphorylated forms of alpha-synuclein in patients diagnosed with probable Alzheimer’s disease. Sci Rep. 2017;7: 40263. https://doi.org/10.1038/srep40263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Twohig D, Rodriguez-Vieitez E, Sando SB, et al. The relevance of cerebrospinal fluid α-synuclein levels to sporadic and familial Alzheimer’s disease. Acta Neuropathol Commun. 2018;6:130. https://doi.org/10.1186/s40478-018-0624-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellomo G, Toja A, Paolini Paoletti F, et al. Investigating alpha-synuclein co-pathology in Alzheimer’s disease by means of cerebrospinal fluid alpha-synuclein seed amplification assay. Alzheimers Dement. 2024;20:2444–52. https://doi.org/10.1002/alz.13658.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang J, Li X, Li JD. The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases. Front Neurosci. 2019;13: 381. https://doi.org/10.3389/fnins.2019.00381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett. 2004;11:213–28. https://doi.org/10.2174/0929866043407174.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pagano G, Taylor KI, Anzures-Cabrera J, et al. Trial of prasinezumab in early-stage Parkinson’s disease. N Engl J Med. 2022;387:421–32. https://doi.org/10.1056/NEJMoa2202867.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pagano G, Monnet A, Reyes A, et al. Sustained effect of prasinezumab on Parkinson’s disease motor progression in the open-label extension of the PASADENA trial. Nat Med. 2024. https://doi.org/10.1038/s41591-024-03270-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pagano G, Taylor KI, Anzures Cabrera J, et al. Prasinezumab slows motor progression in rapidly progressing early-stage Parkinson’s disease. Nat Med. 2024;30:1096–103. https://doi.org/10.1038/s41591-024-02886-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singer SZW, Kjærsgaard L, Wiedemann J, Kallunki P, Kompus K, Jørgensen M, Flensburg M, Bidani A, Molinuevo JL, Takeda A, Grønning B, Luthman J. editor Safety and Efficacy of the Anti-alpha Synuclein Monoclonal Antibody Lu AF82422 for the Treatment of Patients with MSA: Results from the Phase 2 AMULET Trial [abstract]. Mov Disord. 2024;39(Suppl 1):Abstract 20.

  • Lang AE, Siderowf AD, Macklin EA, et al. Trial of cinpanemab in early Parkinson’s disease. N Engl J Med. 2022;387:408–20. https://doi.org/10.1056/NEJMoa2203395.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jankovic J, Goodman I, Safirstein B, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2018;75:1206–14. https://doi.org/10.1001/jamaneurol.2018.1487.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fjord-Larsen L, Thougaard A, Wegener KM, et al. Nonclinical safety evaluation, pharmacokinetics, and target engagement of Lu AF82422, a monoclonal IgG1 antibody against alpha-synuclein in development for treatment of synucleinopathies. MAbs. 2021;13: 1994690. https://doi.org/10.1080/19420862.2021.1994690.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weihofen A, Liu Y, Arndt JW, et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol Dis. 2019;124:276–88. https://doi.org/10.1016/j.nbd.2018.10.016.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kallunki P, Willén K, Sotty F, et al. The anti-alpha-synuclein antibody Lu AF82422 binds to pathological alpha-synuclein species from human brains and inhibits seeded alpha-synuclein aggregation. In: Movement disorders. Hoboken: Wiley; 2022.

  • Burré J, Edwards RH, Halliday G, et al. Research priorities on the role of α-synuclein in Parkinson’s disease pathogenesis. Mov Disord. 2024;39:1663–78. https://doi.org/10.1002/mds.29897.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greten-Harrison B, Polydoro M, Morimoto-Tomita M, et al. αβγ-synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci U S A. 2010;107:19573–8. https://doi.org/10.1073/pnas.1005005107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole TA, Zhao H, Collier TJ, et al. α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease. JCI Insight 2021;6. https://doi.org/10.1172/jci.insight.135633.

  • DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9: eaag0481. https://doi.org/10.1126/scitranslmed.aag0481.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alnylam. Alnylam R&D day. 2023. https://capella.alnylam.com/wp-content/uploads/2023/12/Alnylam-RD-Day-2023-1.pdf. Accessed 19 Nov 2024.

  • Boike L, Cioffi AG, Majewski FC, et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem Biol. 2021;28:4-13.e17. https://doi.org/10.1016/j.chembiol.2020.09.001.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Alpha-synuclein oligomers: a new hope. Acta Neuropathol. 2017;134:819–38. https://doi.org/10.1007/s00401-017-1755-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grossauer A, Hemicker G, Krismer F, et al. α-Synuclein seed amplification assays in the diagnosis of synucleinopathies using cerebrospinal fluid-a systematic review and meta-analysis. Mov Disord Clin Pract. 2023;10:737–47. https://doi.org/10.1002/mdc3.13710.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meilleur K, Seppi K, Krismer F, et al. SNCA Antisense Oligonucleotide for Multiple System Atrophy: HORIZON Trial Update [abstract]. Mov Disord. 2024;39(Suppl 1):Abstract 644.

  • Burke JR, Roses AD. Genetics of Alzheimer’s disease. Int J Neurol. 1991;25–26:41–51.

    PubMed 

    Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:1977–81. https://doi.org/10.1073/pnas.90.5.1977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–3. https://doi.org/10.1126/science.8346443.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi Y, Yamada K, Liddelow SA, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549:523–7. https://doi.org/10.1038/nature24016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98:1141-1154.e1147. https://doi.org/10.1016/j.neuron.2018.05.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi Y, Manis M, Long J, et al. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J Exp Med. 2019;216:2546–61. https://doi.org/10.1084/jem.20190980.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tcw J, Qian L, Pipalia NH, et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell. 2022;185:2213-2233.e2225. https://doi.org/10.1016/j.cell.2022.05.017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanchard JW, Akay LA, Davila-Velderrain J, et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature. 2022;611:769–79. https://doi.org/10.1038/s41586-022-05439-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson MR, Liu P, Agrawal A, et al. The APOE-R136S mutation protects against APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. Nat Neurosci. 2023;26:2104–21. https://doi.org/10.1038/s41593-023-01480-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Y, Song S, Parhizkar S, et al. APOE3ch alters microglial response and suppresses Aβ-induced tau seeding and spread. Cell. 2024;187:428-445.e420. https://doi.org/10.1016/j.cell.2023.11.029.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chemparathy A, Le Guen Y, Chen S, et al. APOE loss-of-function variants: compatible with longevity and associated with resistance to Alzheimer’s disease pathology. Neuron. 2024;112:1110-1116.e1115. https://doi.org/10.1016/j.neuron.2024.01.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature. 2024;628:154–61. https://doi.org/10.1038/s41586-024-07185-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Husain MA, Laurent B, Plourde M. APOE and Alzheimer’s disease: from lipid transport to physiopathology and therapeutics. Front Neurosci. 2021;15:630502. https://doi.org/10.3389/fnins.2021.630502.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raulin A-C, Doss SV, Trottier ZA, et al. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener. 2022;17:72. https://doi.org/10.1186/s13024-022-00574-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reiman EM, Arboleda-Velasquez JF, Quiroz YT, et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11:667. https://doi.org/10.1038/s41467-019-14279-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fortea J, Pegueroles J, Alcolea D, et al. APOE4 homozygosity represents a distinct genetic form of Alzheimer’s disease. Nat Med. 2024;30:1284–91. https://doi.org/10.1038/s41591-024-02931-w.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vance JM, Farrer LA, Huang Y, et al. Report of the APOE4 National Institute on Aging/Alzheimer disease sequencing project consortium working group: reducing APOE4 in carriers is a therapeutic goal for Alzheimer’s disease. Ann Neurol. 2024;95:625–34. https://doi.org/10.1002/ana.26864.

    Article 
    PubMed 

    Google Scholar 

  • Sepulveda-Falla D, Sanchez JS, Almeida MC, et al. Distinct tau neuropathology and cellular profiles of an APOE3 Christchurch homozygote protected against autosomal dominant Alzheimer’s dementia. Acta Neuropathol. 2022;144:589–601. https://doi.org/10.1007/s00401-022-02467-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quiroz YT, Aguillon D, Aguirre-Acevedo DC, et al. APOE3 christchurch heterozygosity and autosomal dominant Alzheimer’s disease. N Engl J Med. 2024;390:2156–64. https://doi.org/10.1056/NEJMoa2308583.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Snow AD, Cummings JA, Lake T. The unifying hypothesis of Alzheimer’s disease: heparan sulfate proteoglycans/glycosaminoglycans are key as first hypothesized over 30 years ago. Front Aging Neurosci. 2021;13: 710683. https://doi.org/10.3389/fnagi.2021.710683.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu Y, Zhao J, Atagi Y, et al. Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate proteoglycan. Mol Neurodegener. 2016;11:37. https://doi.org/10.1186/s13024-016-0099-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holmes BB, DeVos SL, Kfoury N, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A. 2013;110:E3138-3147. https://doi.org/10.1073/pnas.1301440110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rauch JN, Luna G, Guzman E, et al. LRP1 is a master regulator of tau uptake and spread. Nature. 2020;580:381–5. https://doi.org/10.1038/s41586-020-2156-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamauchi Y, Deguchi N, Takagi C, et al. Role of the N- and C-terminal domains in binding of apolipoprotein E isoforms to heparan sulfate and dermatan sulfate: a surface plasmon resonance study. Biochemistry. 2008;47:6702–10. https://doi.org/10.1021/bi8003999.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li Z, Shue F, Zhao N, Shinohara M, Bu G. APOE2: protective mechanism and therapeutic implications for Alzheimer’s disease. Mol Neurodegener. 2020;15:63. https://doi.org/10.1186/s13024-020-00413-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sienski G, Narayan P, Bonner JM, et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med. 2021;13:13. https://doi.org/10.1126/scitranslmed.aaz4564.

    Article 
    CAS 

    Google Scholar 

  • Yin Z, Rosenzweig N, Kleemann KL, et al. APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFβ-mediated checkpoints. Nat Immunol. 2023;24:1839–53. https://doi.org/10.1038/s41590-023-01627-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu CC, Wang N, Chen Y, et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat Immunol. 2023;24:1854–66. https://doi.org/10.1038/s41590-023-01640-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim Johnson MK, Stephen Kaminsky, Gianni Amato, Nithya Selvan, Richie Khanna, Sandi See Tai, Ronald Crystal, editor LB4 – Safety and Preliminary Efficacy of AAV Gene Therapy (LX1001) in Patients with APOE4 Homozygote Alzheimer’s Disease – Interim Data from a Phase 1/2, Open-Label, 52-Week, Multicenter Study. J Prev Alzheimer’s Dis. 2025;12(Suppl 1):Abstract LB04.

  • Belloy ME, Andrews SJ, Le Guen Y, et al. APOE genotype and Alzheimer disease risk across age, sex, and population ancestry. JAMA Neurol. 2023;80:1284–94. https://doi.org/10.1001/jamaneurol.2023.3599.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferguson CM, Hildebrand S, Godinho B, et al. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer’s disease. Alzheimers Dement. 2024;20:2632–52. https://doi.org/10.1002/alz.13703.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Litvinchuk A, Huynh TV, Shi Y, et al. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann Neurol. 2021;89:952–66. https://doi.org/10.1002/ana.26043.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferguson CM, Godinho B, Echeverria D, et al. A combinatorial approach for achieving CNS-selective RNAi. Nucleic Acids Res. 2024;52:5273–84. https://doi.org/10.1093/nar/gkae100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huynh TV, Liao F, Francis CM, et al. Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron. 2017;96:1013-1023.e1014. https://doi.org/10.1016/j.neuron.2017.11.014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasmussen KL, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. APOE and dementia – resequencing and genotyping in 105,597 individuals. Alzheimers Dement. 2020;16:1624–37. https://doi.org/10.1002/alz.12165.

    Article 
    PubMed 

    Google Scholar 

  • Deza-Lougovski YI, Weiss LM, Horton HM, et al. Circulating apoE4 protein levels from dried blood spots predict cognitive function in a large population-based survey setting. Alzheimers Dement. 2024;20:7613–23. https://doi.org/10.1002/alz.14224.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mak AC, Pullinger CR, Tang LF, et al. Effects of the absence of apolipoprotein e on lipoproteins, neurocognitive function, and retinal function. JAMA Neurol. 2014;71:1228–36. https://doi.org/10.1001/jamaneurol.2014.2011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaji S, Berghoff SA, Spieth L, et al. Apolipoprotein E aggregation in microglia initiates Alzheimer’s disease pathology by seeding β-amyloidosis. Immunity. 2024;57:2651-2668.e2612. https://doi.org/10.1016/j.immuni.2024.09.014.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gratuze M, Jiang H, Wang C, et al. APOE antibody inhibits Aβ-associated tau seeding and spreading in a mouse model. Ann Neurol. 2022;91:847–52. https://doi.org/10.1002/ana.26351.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong M, Jiang H, Serrano JR, et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci Transl Med. 2021;13:13. https://doi.org/10.1126/scitranslmed.abd7522.

    Article 
    CAS 

    Google Scholar 

  • Liao F, Zhang TJ, Jiang H, et al. Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathol Commun. 2015;3:70. https://doi.org/10.1186/s40478-015-0250-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blumenfeld J, Yip O, Kim MJ, Huang Y. Cell type-specific roles of APOE4 in Alzheimer disease. Nat Rev Neurosci. 2024;25:91–110. https://doi.org/10.1038/s41583-023-00776-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang Y, Liu XQ, Wyss-Coray T, et al. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci U S A. 2001;98:8838–43. https://doi.org/10.1073/pnas.151254698.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris FM, Brecht WJ, Xu Q, et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A. 2003;100:10966–71. https://doi.org/10.1073/pnas.1434398100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao J, Davis MD, Martens YA, et al. APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum Mol Genet. 2017;26:2690–700. https://doi.org/10.1093/hmg/ddx155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanson AJ, Bayer-Carter JL, Green PS, et al. Effect of apolipoprotein E genotype and diet on apolipoprotein E lipidation and amyloid peptides: randomized clinical trial. JAMA Neurol. 2013;70:972–80. https://doi.org/10.1001/jamaneurol.2013.396.

    Article 
    PubMed 

    Google Scholar 

  • Liang Y, Lin S, Beyer TP, et al. A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J Neurochem. 2004;88:623–34. https://doi.org/10.1111/j.1471-4159.2004.02183.x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mandrekar-Colucci S, Landreth GE. Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opin Ther Targets. 2011;15:1085–97. https://doi.org/10.1517/14728222.2011.594043.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Litvinchuk A, Suh JH, Guo JL, et al. Amelioration of Tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron. 2024;112:384-403.e388. https://doi.org/10.1016/j.neuron.2023.10.023.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jakobsson T, Treuter E, Gustafsson J, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci. 2012;33:394–404. https://doi.org/10.1016/j.tips.2012.03.013.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13:433–44. https://doi.org/10.1038/nrd4280.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Z, Fan Q, Luo X, et al. Brain-restricted mTOR inhibition with binary pharmacology. Nature. 2022;609:822–8. https://doi.org/10.1038/s41586-022-05213-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seneviratne U, Huang Z, Am Ende CW, et al. Photoaffinity labeling and quantitative chemical proteomics identify LXRβ as the functional target of enhancers of astrocytic apoE. Cell Chem Biol. 2021;28:148-157.e147. https://doi.org/10.1016/j.chembiol.2020.09.002.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marino C, Perez-Corredor P, O’Hare M, et al. APOE Christchurch-mimetic therapeutic antibody reduces APOE-mediated toxicity and tau phosphorylation. Alzheimers Dement. 2024;20:819–36. https://doi.org/10.1002/alz.13436.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Griswold AJ, Celis K, Bussies PL, et al. Increased APOE ε4 expression is associated with the difference in Alzheimer’s disease risk from diverse ancestral backgrounds. Alzheimers Dement. 2021;17:1179–88. https://doi.org/10.1002/alz.12287.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9:106–18. https://doi.org/10.1038/nrneurol.2012.263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15:501–18. https://doi.org/10.1038/s41582-019-0228-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46. https://doi.org/10.1016/s0140-6736(20)30367-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cummings JL, Zhou Y, Lee G, et al. Alzheimer’s disease drug development pipeline: 2025. Alzheimers Dement (N Y). 2025;11:e70098. https://doi.org/10.1002/trc2.70098.

    Article 
    PubMed 

    Google Scholar 

  • McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ. The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener. 2021;16:49. https://doi.org/10.1186/s13024-021-00467-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126:479–97. https://doi.org/10.1007/s00401-013-1177-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Efthymiou AG, Goate AM. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener. 2017;12:43. https://doi.org/10.1186/s13024-017-0184-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27. https://doi.org/10.1056/NEJMoa1211851.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368:107–16. https://doi.org/10.1056/NEJMoa1211103.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Satoh JI, Tabunoki H, Ishida T, et al. Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology. 2011;31:363–75. https://doi.org/10.1111/j.1440-1789.2010.01174.x.

    Article 
    PubMed 

    Google Scholar 

  • Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2017;217:459–72. https://doi.org/10.1083/jcb.201709069.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paolicelli RC, Sierra A, Stevens B, et al. Microglia states and nomenclature: a field at its crossroads. Neuron. 2022;110:3458–83. https://doi.org/10.1016/j.neuron.2022.10.020.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savva GM, Wharton SB, Ince PG, et al. Age, Neuropathology, and Dementia. N Engl J Med. 2009;360:2302–9. https://doi.org/10.1056/NEJMoa0806142.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cummings J, Aisen PS, DuBois B, et al. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther. 2016;8:39. https://doi.org/10.1186/s13195-016-0207-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salloway SP, Sevingy J, Budur K, et al. Advancing combination therapy for Alzheimer’s disease. Alzheimers Dement (N Y). 2020;6:e12073. https://doi.org/10.1002/trc2.12073.

    Article 
    PubMed 

    Google Scholar 

  • Cummings JL, Osse AML, Kinney JW, Cammann D, Chen J. Alzheimer’s disease: combination therapies and clinical trials for combination therapy development. CNS Drugs. 2024;38:613–24. https://doi.org/10.1007/s40263-024-01103-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cummings J, Gold M, Mintun M, et al. Key considerations for combination therapy in Alzheimer’s clinical trials: Perspectives from an expert advisory board convened by the Alzheimer’s drug discovery foundation. J Prev Alzheimers Dis. 2025;12: 100001. https://doi.org/10.1016/j.tjpad.2024.100001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deardorff WJ, Grossberg GT. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Devel Ther. 2016;10:3267–79. https://doi.org/10.2147/dddt.S86463.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doherty T, editor. Clinical trial design for concurrent anti-amyloid, anti-tau antibody therapy for sporadic AD. Vienna: AD/PD; 2025.

    Google Scholar 

  • Continue Reading