Caporael LR. Ergotism: the Satan loosed in Salem? Science. 1976;192(4234):21–6. https://doi.org/10.1126/science.769159.
Google Scholar
Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, et al. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol. 2020;7:5. https://doi.org/10.1186/s40694-020-00095-z.
Google Scholar
Cairns TC, Zheng XM, Zheng P, Sun JB, Meyer V. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol Biofuels. 2019;12:77. https://doi.org/10.1186/s13068-019-1400-4.
Google Scholar
Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, et al. Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol. 2013;163(2):112–23. https://doi.org/10.1016/j.jbiotec.2012.06.024. (From NLM).
Google Scholar
Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C. Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng. 2012;109(2):462–71. https://doi.org/10.1002/bit.23313.
Google Scholar
Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, et al. Insights into the mechanisms involved in the fungal degradation of plastics. Ecotoxicol Environ Saf. 2023;262:115202. https://doi.org/10.1016/j.ecoenv.2023.115202.
Google Scholar
Ibrahim SS, Ionescu D, Grossart H-P. Tapping into fungal potential: biodegradation of plastic and rubber by potent fungi. Sci Total Environ. 2024;934:173188. https://doi.org/10.1016/j.scitotenv.2024.173188.
Google Scholar
Meng X, Yang L, Liu H, Li Q, Xu G, Zhang Y, et al. Protein engineering of stable IsPETase for PET plastic degradation by Premuse. Int J Biol Macromol. 2021;180:667–76. https://doi.org/10.1016/j.ijbiomac.2021.03.058.
Google Scholar
Garg S, Kim M, Romero-Suarez D. Current advancements in fungal engineering technologies for sustainable development goals. Trends Microbiol. 2024. https://doi.org/10.1016/j.tim.2024.11.001.
Google Scholar
Pullen RM, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, et al. Considerations for domestication of novel strains of filamentous fungi. ACS Synth Biol. 2025;14(2):343–62. https://doi.org/10.1021/acssynbio.4c00672.
Google Scholar
Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol. 2016;3(1):6. https://doi.org/10.1186/s40694-016-0024-8.
Google Scholar
Madhavan A, Arun KB, Sindhu R, Alphonsa Jose A, Pugazhendhi A, Binod P, et al. Engineering interventions in industrial filamentous fungal cell factories for biomass valorization. Bioresour Technol. 2022;344:126209. https://doi.org/10.1016/j.biortech.2021.126209.
Google Scholar
Varriale L, Ulber R. Fungal-based biorefinery: from renewable resources to organic acids. ChemBioEng Rev. 2023;10(3):272–92. https://doi.org/10.1002/cben.202200059.
Google Scholar
Wang C, Kuzyakov Y. Mechanisms and implications of bacterial–fungal competition for soil resources. ISME J. 2024. https://doi.org/10.1093/ismejo/wrae073.
Google Scholar
Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Gimbert IH, et al. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol. 2014;1(1):1. https://doi.org/10.1186/s40694-014-0001-z.
Google Scholar
Pleissner D, Dietz D, van Duuren J, Wittmann C, Yang X, Lin CSK, et al. Biotechnological production of organic acids from renewable resources. Adv Biochem Eng Biotechnol. 2019;166:373–410. https://doi.org/10.1007/10_2016_73.
Google Scholar
Behera BC. Citric acid from Aspergillus niger: a comprehensive overview. Crit Rev Microbiol. 2020;46(6):727–49. https://doi.org/10.1080/1040841X.2020.1828815.
Google Scholar
Steiger MG, Rassinger A, Mattanovich D, Sauer M. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metab Eng. 2019;52:224–31. https://doi.org/10.1016/j.ymben.2018.12.004.
Google Scholar
Tong Z, Zheng X, Tong Y, Shi Y-C, Sun J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact. 2019;18(1):28. https://doi.org/10.1186/s12934-019-1064-6.
Google Scholar
Tong ZY, Zheng XM, Tong Y, Shi YC, Sun JB. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact. 2019. https://doi.org/10.1186/s12934-019-1064-6.
Google Scholar
Upton DJ, McQueen-Mason SJ, Wood AJ. In silico evolution of Aspergillus niger organic acid production suggests strategies for switching acid output. Biotechnol Biofuels. 2020;13:27. https://doi.org/10.1186/s13068-020-01678-z.
Google Scholar
Werpy T, Petersen G. Top Value Added Chemicals from Biomass: Volume I — Results of Screening for Potential Candidates from Sugars and Synthesis Gas; DOE/GO-102004-1992; TRN: US200427%%671; National Renewable Energy Lab. (NREL), Golden, CO (United States), United States, 2004. https://doi.org/10.2172/15008859.
Kövilein A, Kubisch C, Cai L, Ochsenreither K. Malic acid production from renewables: a review. J Chem Technol Biotechnol. 2020;95(3):513–26. https://doi.org/10.1002/jctb.6269.
Google Scholar
Xu Y, Zhou Y, Cao W, Liu H. Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux. ACS Synth Biol. 2020;9(6):1418–25. https://doi.org/10.1021/acssynbio.0c00096.
Google Scholar
Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx N, et al. Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnol Biofuels. 2016;9(1):135. https://doi.org/10.1186/s13068-016-0553-7.
Google Scholar
Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, et al. Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels. 2016;9(1):67. https://doi.org/10.1186/s13068-016-0483-4.
Google Scholar
Okabe M, Lies D, Kanamasa S, Park EY. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol. 2009;84(4):597–606. https://doi.org/10.1007/s00253-009-2132-3.
Google Scholar
da Cruz JC, de Castro AM, Servulo EFC. World market and biotechnological production of itaconic acid. 3 Biotech. 2018;8:138. https://doi.org/10.1007/s13205-018-1151-0.
Google Scholar
Chiloeches A, Cuervo-Rodríguez R, López-Fabal F, Fernández-García M, Echeverría C, Muñoz-Bonilla A. Antibacterial and compostable polymers derived from biobased itaconic acid as environmentally friendly additives for biopolymers. Polym Test. 2022;109:107541. https://doi.org/10.1016/j.polymertesting.2022.107541.
Google Scholar
Teleky BE, Vodnar DC. Biomass-derived production of itaconic acid as a building block in specialty polymers. Polymers. 2019. https://doi.org/10.3390/polym11061035.
Google Scholar
Yang J, Yue H-R, Pan L-Y, Feng J-X, Zhao S, Suwannarangsee S, et al. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: current status and future prospects. Bioresour Technol. 2023;385:129449. https://doi.org/10.1016/j.biortech.2023.129449.
Google Scholar
Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, et al. Carbon catabolite repression in filamentous fungi. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms19010048.
Google Scholar
de Assis LJ, Silva LP, Bayram O, Dowling P, Kniemeyer O, Krüger T, et al. Carbon catabolite repression in filamentous fungi is regulated by phosphorylation of the transcription factor CreA. MBio. 2021. https://doi.org/10.1128/mBio.03146-20.
Google Scholar
Wang Z-D, Wang B-T, Jin L, Ruan H-H, Jin F-J. Implications of carbon catabolite repression for Aspergillus-based cell factories: a review. Biotechnol J. 2024;19(2):2300551. https://doi.org/10.1002/biot.202300551.
Google Scholar
Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci U S A. 2012;109(19):7397–402. https://doi.org/10.1073/pnas.1200785109.
Google Scholar
Chroumpi T, Makela MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv. 2020;43:107551. https://doi.org/10.1016/j.biotechadv.2020.107551.
Google Scholar
Liu JJ, Xie ZP, Shin HD, Li JH, Du GC, Chen J, et al. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. J Biotechnol. 2017;253:1–9. https://doi.org/10.1016/j.jbiotec.2017.05.011.
Google Scholar
Max B, Salgado JM, Rodriguez N, Cortes S, Converti A, Dominguez JM. Biotechnological production of citric acid. Braz J Microbiol. 2010;41(4):862–75. https://doi.org/10.1590/S1517-83822010000400005.
Google Scholar
Engel CAR, Straathof AJJ, Zijlmans TW, van Gulik WM, van der Wielen LAM. Fumaric acid production by fermentation. Appl Microbiol Biotechnol. 2008;78(3):379–89. https://doi.org/10.1007/s00253-007-1341-x.
Google Scholar
Kuenz A, Gallenmuller Y, Willke T, Vorlop KD. Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol. 2012;96(5):1209–16. https://doi.org/10.1007/s00253-012-4221-y.
Google Scholar
Alcantara J, Mondala A, Hughey L, Shields S. Direct succinic acid production from minimally pretreated biomass using sequential solid-state and slurry fermentation with mixed fungal cultures. Fermentation. 2017;3(3):30.
Google Scholar
Strasser H, Burgstaller W, Schinner F. High-yield production of oxalic-acid for metal leaching processes by Aspergillus-Niger. FEMS Microbiol Lett. 1994;119(3):365–70.
Google Scholar
Hossain AH, Ter Beek A, Punt PJ. Itaconic acid degradation in Aspergillus niger: the role of unexpected bioconversion pathways. Fungal Biol Biotechnol. 2019;6:1. https://doi.org/10.1186/s40694-018-0062-5.
Google Scholar
Yang L, Henriksen MM, Hansen RS, Lübeck M, Vang J, Andersen JE, et al. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR–Cas9 system for succinic acid production from renewable biomass. Biotechnol Biofuels. 2020;13(1):206. https://doi.org/10.1186/s13068-020-01850-5.
Google Scholar
Ilyas S, Chi R-A, Lee J-C. Fungal bioleaching of metals from mine tailing. Miner Process Extr Metall Rev. 2013;34(3):185–94. https://doi.org/10.1080/08827508.2011.623751.
Google Scholar
Ozer Uyar GE, Uyar B. Potato peel waste fermentation by Rhizopus oryzae to produce lactic acid and ethanol. Food Sci Nutr. 2023;11(10):5908–17. https://doi.org/10.1002/fsn3.3670.
Google Scholar
Bai D-M, Li S-Z, Liu ZL, Cui Z-F. Enhanced l-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Appl Biochem Biotechnol. 2008;144(1):79–85. https://doi.org/10.1007/s12010-007-8078-y.
Google Scholar
Tian Q, Feng Y, Huang H, Zhang J, Yu Y, Guan Z, et al. Production of lactobionic acid from lactose using the cellobiose dehydrogenase-3-HAA-laccase system from Pycnoporus sp. SYBC-L10. Lett Appl Microbiol. 2018;67(6):589–97. https://doi.org/10.1111/lam.13070.
Google Scholar
Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie. 2004;86(11):807–15. https://doi.org/10.1016/j.biochi.2004.09.017.
Google Scholar
Ji X-J, Zhang A-H, Nie Z-K, Wu W-J, Ren L-J, Huang H. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. Bioresour Technol. 2014;170:356–60. https://doi.org/10.1016/j.biortech.2014.07.098.
Google Scholar
Crawford MA, Sinclair AJ, Hall B, Ogundipe E, Wang Y, Bitsanis D, et al. The imperative of arachidonic acid in early human development. Prog Lipid Res. 2023;91:101222. https://doi.org/10.1016/j.plipres.2023.101222.
Google Scholar
de Man R, German L. Certifying the sustainability of biofuels: promise and reality. Energ Policy. 2017;109:871–83. https://doi.org/10.1016/j.enpol.2017.05.047.
Google Scholar
Santek M, Beluhan S, Santek B. Production of microbial lipids from lignocellulosic biomass. In: Nageswara-Rao M, Soneji J, editors. Advances in Biofuels and Bioenergy. 2018.
Sayeda AA, Mohsen SA, Osama HES, Azhar AH, Saher SM. Biodiesel production from Egyptian isolate Fusarium oxysporum NRC2017. Bull Natl Res Cent. 2019;43(1):210. https://doi.org/10.1186/s42269-019-0254-z.
Google Scholar
Bogdan VI, Koklin AE, Krasovsky VG, Lunin VV, Sergeeva YE, Ivashechkin AA, et al. Production of fatty acid methyl esters that are the basis for biodiesel fuel from mycelial fungi lipids extracted by supercritical CO2. Russ J Phys Chem B+. 2014;8(8):1004–8. https://doi.org/10.1134/S1990793114080028.
Google Scholar
Sergeeva YE, Galanina LA, Andrianova DA, Feofilova EP. Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl Biochem Micro+. 2008;44(5):523–7. https://doi.org/10.1134/S0003683808050128.
Google Scholar
Mhlongo SI, Ezeokoli OT, Roopnarain A, Ndaba B, Sekoai PT, Habimana O, et al. The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.637381.
Google Scholar
Zhang S, Zhang L, Xu G, Li F, Li X. A review on biodiesel production from microalgae: influencing parameters and recent advanced technologies. Front Microbiol. 2022. https://doi.org/10.3389/fmicb.2022.970028.
Google Scholar
Tabatabaei M, Alidadi A, Dehhaghi M, Kazemi Shariat Panahi H, Lam SS, Nizami A-S, et al. Fungi as bioreactors for biodiesel production. In: Salehi Jouzani G, Tabatabaei M, Aghbashlo M, editors. Fungi in fuel biotechnology. Cham: Springer International Publishing; 2020. p. 39–67.
Google Scholar
Zhang K, Huang B, Yuan K, Ji X, Song P, Ding Q, et al. Comparative transcriptomics analysis of the responses of the filamentous fungus Glarea lozoyensis to different carbon sources. Front Microbiol. 2020;11:190. https://doi.org/10.3389/fmicb.2020.00190.
Google Scholar
Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, et al. Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation for TAG accumulation in oleaginous fungus Mortierella alpina. Biotechnol Biofuels. 2020;13(1):116. https://doi.org/10.1186/s13068-020-01757-1.
Google Scholar
Lu HQ, Chen HQ, Tang X, Yang Q, Zhang H, Chen YQ, et al. Metabolomics analysis reveals the role of oxygen control in the nitrogen limitation induced lipid accumulation in Mortierella alpina. J Biotechnol. 2021;325:325–33. https://doi.org/10.1016/j.jbiotec.2020.10.004.
Google Scholar
Chang LL, Tang X, Zhang H, Chen YQ, Chen HQ, Chen W. Improved lipogenesis in Mortierella alpina by abolishing the Snf4-mediated energy-saving mode under low glucose. J Agric Food Chem. 2020;68(39):10787–98. https://doi.org/10.1021/acs.jafc.0c04572.
Google Scholar
Chang LL, Tang X, Lu HQ, Zhang H, Chen YQ, Chen HQ, et al. Role of adenosine monophosphate deaminase during fatty acid accumulation in oleaginous fungus Mortierella alpina. J Agric Food Chem. 2019;67(34):9551–9. https://doi.org/10.1021/acs.jafc.9b03603.
Google Scholar
Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In: Laskin AI, Bennett JW, Gadd GM, editors. Advances in applied microbiology, vol. 51. London: Academic Press; 2002. p. 1–52.
Subhash GV, Mohan SV. Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Convers Biorefin. 2015;5(2):215–26. https://doi.org/10.1007/s13399-014-0128-4.
Google Scholar
Bento HBS, Carvalho AKF, Reis CER, De Castro HF. Single cell oil production and modification for fuel and food applications: assessing the potential of sugarcane molasses as culture medium for filamentous fungus. Ind Crops Prod. 2020;145:112141. https://doi.org/10.1016/j.indcrop.2020.112141.
Google Scholar
Bonatsos N, Marazioti C, Moutousidi E, Anagnostou A, Koutinas A, Kookos IK. Techno-economic analysis and life cycle assessment of heterotrophic yeast-derived single cell oil production process. Fuel. 2020;264:116839. https://doi.org/10.1016/j.fuel.2019.116839.
Google Scholar
Zhuang J, Marchant MA, Nokes SE, Strobel HJ. Economic analysis of cellulase production methods for bio-ethanol. Appl Eng Agric. 2007;23(5):679–87. https://doi.org/10.13031/2013.23659.
Google Scholar
Mohanasrinivasan V, Dhrisya P, Dipinsha KP, Unnithan CM, Viswanath KM, Devi CS. comparative study of the lipase yield by solid state and submerged fermentations using fungal species from biopharmaceutical oil waste. Afr J Biotechnol. 2009;8(1):73–6.
Google Scholar
Castilho LR, Polato CMS, Baruque EA, Sant’Anna GL, Freire DMG. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem Eng J. 2000;4(3):239–47. https://doi.org/10.1016/S1369-703X(99)00052-2.
Google Scholar
Manan MA, Webb C. Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng. 2017;4(1):511–32. https://doi.org/10.15406/jabb.2017.04.00094.
Google Scholar
Liu L, Song J, Li Y, Li P, Wang HL. Robust and cost-saving static solid cultivation method for lipid production using the chlamydospores of Phanerochaete chrysosporium. Biotechnol Biofuels. 2019;12:123. https://doi.org/10.1186/s13068-019-1464-1.
Google Scholar
Bamidele MO, Bamikale MB, Cárdenas-Hernández E, Bamidele MA, Castillo-Olvera G, Sandoval-Cortes J, et al. Bioengineering in solid-state fermentation for next sustainable food bioprocessing. Next Sustainability. 2025;6:100105. https://doi.org/10.1016/j.nxsust.2025.100105.
Google Scholar
Borkertas S, Viskelis J, Viskelis P, Streimikyte P, Gasiunaite U, Urbonaviciene D. Fungal biomass fermentation: valorizing the food industry’s waste. Fermentation. 2025;11(6):351.
Google Scholar
Zhang B-B, Lu L-P, Xu G-R. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: a mechanistic study. J Biotechnol. 2015;206:60–5. https://doi.org/10.1016/j.jbiotec.2015.04.011.
Google Scholar
Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact. 2021. https://doi.org/10.1186/s12934-021-01542-1.
Google Scholar
Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo). 2012;65(8):385–95. https://doi.org/10.1038/ja.2012.27.
Google Scholar
Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 2019;17(3):167–80. https://doi.org/10.1038/s41579-018-0121-1.
Google Scholar
Kjærbølling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, et al. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc Natl Acad Sci U S A. 2018;115(4):E753–61. https://doi.org/10.1073/pnas.1715954115.
Google Scholar
Zhou XW, Zhu HF, Liu L, Lin J, Tang KX. A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol. 2010;86(6):1707–17. https://doi.org/10.1007/s00253-010-2546-y.
Google Scholar
Mendoza N, Silva EME. Introduction to phytochemicals: secondary metabolites from plants with active principles for pharmacological importance. Intechopen. 2018. https://doi.org/10.5772/intechopen.78226.
Google Scholar
Talbot NJ. Plant immunity: a little help from fungal friends. Curr Biol. 2015;25(22):R1074-1076. https://doi.org/10.1016/j.cub.2015.09.068.
Google Scholar
Li J, Mutanda I, Wang K, Yang L, Wang J, Wang Y. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nat Commun. 2019;10(1):4850. https://doi.org/10.1038/s41467-019-12879-y.
Google Scholar
Ji Y, Bi JN, Yan B, Zhu XD. Taxol-producing fungi: a new approach to industrial production of Taxol. Chin J Biotechnol. 2006;22(1):1–6. https://doi.org/10.1016/s1872-2075(06)60001-0.
Google Scholar
El-Sayed ASA, El-Sayed MT, Rady AM, Zein N, Enan G, Shindia A, et al. Exploiting the biosynthetic potency of Taxol from fungal endophytes of conifers plants; genome mining and metabolic manipulation. Molecules. 2020;25(13):3000. https://doi.org/10.3390/molecules25133000.
Google Scholar
Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng. 2007;9(2):160–8. https://doi.org/10.1016/j.ymben.2006.10.005.
Google Scholar
Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng. 2008;10(3):201–6. https://doi.org/10.1016/j.ymben.2008.03.001.
Google Scholar
Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, et al. Molecular aspects of mycotoxins-a serious problem for human health. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21218187.
Google Scholar
Boysen JM, Saeed N, Hillmann F. Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus. Beilstein J Org Chem. 2021;17:1814–27. https://doi.org/10.3762/bjoc.17.124.
Google Scholar
Gao X, Mu P, Wen J, Sun Y, Chen Q, Deng Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem Toxicol. 2018;112:310–9. https://doi.org/10.1016/j.fct.2017.12.066.
Google Scholar
Zhao Q, Qiu Y, Wang X, Gu Y, Zhao Y, Wang Y, et al. Inhibitory effects of Eurotium cristatum on growth and aflatoxin B1 biosynthesis in Aspergillus flavus. Front Microbiol. 2020;11:921. https://doi.org/10.3389/fmicb.2020.00921.
Google Scholar
Paterson RRM, Lima N. Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms. 2017. https://doi.org/10.3390/microorganisms5030044.
Google Scholar
Paterson RRM. Fungi and fungal toxins as weapons. Mycol Res. 2006;110:1003–10. https://doi.org/10.1016/j.mycres.2006.04.004.
Google Scholar
Cheng J-T, Cao F, Chen X-A, Li Y-Q, Mao X-M. Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genomics. 2020;21(1):424. https://doi.org/10.1186/s12864-020-06813-6.
Google Scholar
Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotech Bioch. 2007;71(9):2105–23. https://doi.org/10.1271/bbb.70183.
Google Scholar
Li YS, Wang ZH, Beier RC, Shen JZ, De Smet D, De Saeger S, et al. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agr Food Chem. 2011;59(8):3441–53. https://doi.org/10.1021/jf200767q.
Google Scholar
Udomkun P, Wiredu AN, Nagle M, Müller J, Vanlauwe B, Bandyopadhyay R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – a review. Food Control. 2017;76:127–38. https://doi.org/10.1016/j.foodcont.2017.01.008.
Google Scholar
Benedict K, Chiller TM, Mody RK. Invasive fungal infections acquired from contaminated food or nutritional supplements: a review of the literature. Foodborne Pathog Dis. 2016;13(7):343–9. https://doi.org/10.1089/fpd.2015.2108.
Google Scholar
Leitao AL, Enguita FJ. Systematic structure-based search for ochratoxin-degrading enzymes in proteomes from filamentous fungi. Biomolecules. 2021. https://doi.org/10.3390/biom11071040.
Google Scholar
Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CFSC, Hintzsche H, et al. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int. 2018;113:74–85. https://doi.org/10.1016/j.foodres.2018.06.067.
Google Scholar
Rustom IYS. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chem. 1997;59(1):57–67. https://doi.org/10.1016/S0308-8146(96)00096-9.
Google Scholar
Gemede HF. Toxicity, mitigation, and chemical analysis of aflatoxins and other toxic metabolites produced by Aspergillus: a comprehensive review. Toxins (Basel). 2025. https://doi.org/10.3390/toxins17070331.
Google Scholar
Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, et al. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1996;93(4):1418–22. https://doi.org/10.1073/pnas.93.4.1418.
Google Scholar
Yu J, Chang PK, Cary JW, Wright M, Bhatnagar D, Cleveland TE, et al. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol. 1995;61(6):2365–71. https://doi.org/10.1128/aem.61.6.2365-2371.1995.
Google Scholar
Wang P, Xu J, Chang PK, Liu Z, Kong Q. New insights of transcriptional regulator AflR in Aspergillus flavus physiology. Microbiol Spectr. 2022;10(1):e0079121. https://doi.org/10.1128/spectrum.00791-21FromNLM.
Google Scholar
Cary JW, Ehrlich KC, Wright M, Chang PK, Bhatnagar D. Generation of aflR disruption mutants of Aspergillus parasiticus. Appl Microbiol Biotechnol. 2000;53((6)):680–4. https://doi.org/10.1007/s002530000319.
Google Scholar
Meyers DM, Obrian G, Du WL, Bhatnagar D, Payne GA. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol. 1998;64(10):3713–7. https://doi.org/10.1128/aem.64.10.3713-3717.1998.
Google Scholar
Chang PK. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol Genet Genomics. 2003;268(6):711–9. https://doi.org/10.1007/s00438-003-0809-3.
Google Scholar
Flaherty JE, Payne GA. Overexpression of aflR leads to upregulation of pathway gene transcription and increased aflatoxin production in Aspergillus flavus. Appl Environ Microbiol. 1997;63(10):3995–4000. https://doi.org/10.1128/aem.63.10.3995-4000.1997.
Google Scholar
Chang PK, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol. 1995;61(6):2372–7. https://doi.org/10.1128/aem.61.6.2372-2377.1995.
Google Scholar
Du W, Obrian GR, Payne GA. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. Food Addit Contam. 2007;24(10):1043–50. https://doi.org/10.1080/02652030701513826.
Google Scholar
Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol. 2011;49(3):329–39. https://doi.org/10.1007/s12275-011-1009-1.
Google Scholar
Aghcheh RK, Kubicek CP. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol. 2015;99(15):6167–81. https://doi.org/10.1007/s00253-015-6763-2.
Google Scholar
Shwab EK, Bok Jin W, Tribus M, Galehr J, Graessle S, Keller Nancy P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell. 2007;6(9):1656–64. https://doi.org/10.1128/ec.00186-07.
Google Scholar
Niehaus EM, Rindermann L, Janevska S, Münsterkötter M, Güldener U, Tudzynski B. Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi. Appl Microbiol Biotechnol. 2018;102(1):279–95. https://doi.org/10.1007/s00253-017-8590-0.
Google Scholar
Yang KL, Liang LL, Ran FL, Liu YH, Li ZG, Lan HH, et al. The dmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Sci Rep. 2016. https://doi.org/10.1038/srep23259.
Google Scholar
Afroz Toma M, Rahman MH, Rahman MS, Arif M, Nazir KHMNH, Dufossé L. Fungal pigments: carotenoids, riboflavin, and polyketides with diverse applications. J Fungi. 2023;9(4):454.
Google Scholar
Meruvu H, Dos Santos JC. Colors of life: a review on fungal pigments. Crit Rev Biotechnol. 2021;41(8):1153–77. https://doi.org/10.1080/07388551.2021.1901647.
Google Scholar
Cavalcante SB, da Silva AF, Pradi L, Lacerda JWF, Tizziani T, Sandjo LP, et al. Antarctic fungi produce pigment with antimicrobial and antiparasitic activities. Braz J Microbiol. 2024;55(2):1251–63. https://doi.org/10.1007/s42770-024-01308-y.
Google Scholar
Mwaheb MA, Hasanien YA, Zaki AG, Abdel-Razek AS, Al Halim LRA. Fusarium verticillioides pigment: production, response surface optimization, gamma irradiation and encapsulation studies. BMC Biotechnol. 2024;24(1):84. https://doi.org/10.1186/s12896-024-00909-7.
Google Scholar
Venil CK, Velmurugan P, Dufossé L, Devi PR, Ravi AV. Fungal pigments: potential coloring compounds for wide ranging applications in textile dyeing. J Fungi. 2020. https://doi.org/10.3390/jof6020068.
Google Scholar
Zhou M, Yajun C, Xue F, Li W, Zhang Y. Isolation and identification of pigment-producing filamentous fungus DBFL05 and its pigment characteristics and chemical structure. CyTA – Journal of Food. 2023;21(1):374–85. https://doi.org/10.1080/19476337.2023.2207613.
Google Scholar
Gomes DC. Fungal pigments: applications and their medicinal potential. In: Deshmukh SK, Takahashi JA, Saxena S, editors. Fungi bioactive metabolites: integration of pharmaceutical applications. Singapore: Springer Nature; 2024. p. 651–81.
Google Scholar
Dufossé L. Chapter 17 – Biotechnological approaches in the production of fungal pigments. In: Singh RS, Bhari R, editors. Fungal biotechnology. London: Academic Press; 2025. p. 449–66.
Google Scholar
Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufossé L. Pigments and colorants from filamentous fungi. In: Merillon J-M, Ramawat KG, editors. Fungal metabolites. Cham: Springer International Publishing; 2016. p. 1–70.
Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM. Carotenoids and some other pigments from fungi and yeasts. Metabolites. 2021. https://doi.org/10.3390/metabo11020092.
Google Scholar
Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61. https://doi.org/10.1016/j.copbio.2013.09.007.
Google Scholar
Lin L, Xu J. Fungal pigments and their roles associated with human health. J Fungi. 2020. https://doi.org/10.3390/jof6040280.
Google Scholar
Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA. Production of vitamin B2 (riboflavin) by microorganisms: an overview. Front Bioeng Biotechnol. 2020;8:570828. https://doi.org/10.3389/fbioe.2020.570828.
Google Scholar
Sajad Hashemi S, Karimi K, Taherzadeh MJ. Integrated process for protein, pigments, and biogas production from baker’s yeast wastewater using filamentous fungi. Bioresour Technol. 2021;337:125356. https://doi.org/10.1016/j.biortech.2021.125356.
Google Scholar
Troiano D, Orsat V, Dumont MJ. Solid-state co-culture fermentation of simulated food waste with filamentous fungi for production of bio-pigments. Appl Microbiol Biotechnol. 2022;106(11):4029–39. https://doi.org/10.1007/s00253-022-11984-1.
Google Scholar
Arruda GL, Raymundo M, Cruz-Santos MM, Shibukawa VP, Jofre FM, Prado CA, et al. Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. Crit Rev Biotechnol. 2025;45(2):393–412. https://doi.org/10.1080/07388551.2024.2349581FromNLM.
Google Scholar
Wei J, Zhao X, Yang X, Jia W, Qin J, Li W, et al. Extraction, purification, and structural analysis of green pigments from Metarhizium flavoviride. J Mol Struct. 2025;1334:141913. https://doi.org/10.1016/j.molstruc.2025.141913.
Google Scholar
Kalra R, Conlan XA, Goel M. Fungi as a potential source of pigments: harnessing filamentous fungi. Front Chem. 2020;8:369. https://doi.org/10.3389/fchem.2020.00369.
Google Scholar
Ree Yoon H, Han S, Chul Shin S, Cheong Yeom S, Jin Kim H. Improved natural food colorant production in the filamentous fungus Monascus ruber using CRISPR-based engineering. Food Res Int. 2023;167:112651. https://doi.org/10.1016/j.foodres.2023.112651.
Google Scholar
Zhang S, Shu M, Gong Z, Liu X, Zhang C, Liang Y, et al. Enhancing extracellular monascus pigment production in submerged fermentation with engineered microbial consortia. Food Microbiol. 2024;121:104499. https://doi.org/10.1016/j.fm.2024.104499.
Google Scholar
Shin CS, Kim HJ, Kim MJ, Ju JY. Morphological change and enhanced pigment production of monascus when cocultured with saccharomyces cerevisiae or aspergillus oryzae. Biotechnol Bioeng. 1998;59(5):576–81. https://doi.org/10.1002/(sici)1097-0290(19980905)59:5%3c576::aid-bit7%3e3.0.co;2-7.
Google Scholar
Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6(2):108–28. https://doi.org/10.1016/j.jobab.2021.02.001.
Google Scholar
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci U S A. 2018;115(25):6506–11. https://doi.org/10.1073/pnas.1711842115.
Google Scholar
Makela MR, Donofrio N, de Vries RP. Plant biomass degradation by fungi. Fungal Genet Biol. 2014;72:2–9. https://doi.org/10.1016/j.fgb.2014.08.010.
Google Scholar
Lange L, Barrett K, Meyer AS. New method for identifying fungal kingdom enzyme hotspots from genome sequences. J Fungi. 2021. https://doi.org/10.3390/jof7030207.
Google Scholar
Wang Q, Zhong C, Xiao H. Genetic engineering of filamentous fungi for efficient protein expression and secretion. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00293.
Google Scholar
Linton SM. Review: The structure and function of cellulase (endo-beta-1,4-glucanase) and hemicellulase (beta-1,3-glucanase and endo-beta-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol. 2020;240:110354. https://doi.org/10.1016/j.cbpb.2019.110354.
Google Scholar
McMillan JD, Jennings EW, Mohagheghi A, Zuccarello M. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol Biofuels. 2011;4:29. https://doi.org/10.1186/1754-6834-4-29.
Google Scholar
Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME. Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol. 1997;14(2):301–4.
Google Scholar
Okal EJ, Aslam MM, Karanja JK, Nyimbo WJ. Mini review: advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microb Pathog. 2020;147:104410. https://doi.org/10.1016/j.micpath.2020.104410.
Google Scholar
Schmoll M, Kubicek CP. Regulation ofTrichodermacellulase formation: lessons in molecular biology from an industrial fungus. Acta Microbiol Immunol Hung. 2003;50(2–3):125–45. https://doi.org/10.1556/AMicr.50.2003.2-3.3. (A review.).
Google Scholar
Sharrock KR. Cellulase assay methods: a review. J Biochem Biophys Methods. 1988;17(2):81–105. https://doi.org/10.1016/0165-022x(88)90040-1.
Google Scholar
Srivastava N, Srivastava M, Alhazmi A, Kausar T, Haque S, Singh R, et al. Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: a review. Environ Pollut. 2021;287:117370. https://doi.org/10.1016/j.envpol.2021.117370.
Google Scholar
Yan S, Wu G. Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels. 2013;6(1):177. https://doi.org/10.1186/1754-6834-6-177.
Google Scholar
Zhou Z, Ju X, Chen J, Wang R, Zhong Y, Li L. Charge-oriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ saccharification: a review. Bioresour Technol. 2021;319:124159. https://doi.org/10.1016/j.biortech.2020.124159.
Google Scholar
Decker SR, Siika-Aho M, Viikari L. Enzymatic depolymerization of plant cell wall hemicelluloses. In Biomass Recalcitrance, 2008; p. 352–373.
Poletto M, Ornaghi HL, Zattera AJ. Native cellulose: structure, characterization and thermal properties. Materials. 2014;7(9):6105–19. https://doi.org/10.3390/ma7096105.
Google Scholar
Smith PJ, Wang HT, York WS, Pena MJ, Urbanowicz BR. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis. Biotechnol Biofuels. 2017;10:286. https://doi.org/10.1186/s13068-017-0973-z.
Google Scholar
Bastawde KB. Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol. 1992;8(4):353–68. https://doi.org/10.1007/BF01198746.
Google Scholar
Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, et al. The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys J. 2010;99(11):3773–81. https://doi.org/10.1016/j.bpj.2010.10.032.
Google Scholar
Cherry JR, Wenger K. Biomass conversion to fermentable sugar. In: Bioworld Europe, 2005; p. 10–12.
Decker SR, Brunecky R, Yarbrough JM, Subramanian V. Perspectives on biorefineries in microbial production of fuels and chemicals. Front Ind Microbiol. 2023. https://doi.org/10.3389/finmi.2023.1202269.
Google Scholar
Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: status, opportunities and challenges. Sci Total Environ. 2021. https://doi.org/10.1016/j.scitotenv.2021.145988.
Google Scholar
Ejaz U, Sohail M, Ghanemi A. Cellulases: from bioactivity to a variety of industrial applications. Biomimetics. 2021;6(3):44.
Google Scholar
Allen F, Andreotti R, Eveleigh DE, Nystrom J. Mary Elizabeth Hickox Mandels, 90, bioenergy leader. Biotechnol Biofuels. 2009;2:22. https://doi.org/10.1186/1754-6834-2-22.
Google Scholar
Peterson R, Nevalainen H. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology (Reading). 2012;158(Pt 1):58–68. https://doi.org/10.1099/mic.0.054031-0.
Google Scholar
Glenn M, Ghosh A, Ghosh BK. Subcellular fractionation of a hypercellulolytic mutant, Trichoderma reesei Rut-C30: localization of endoglucanase in microsomal fraction. Appl Environ Microbiol. 1985;50(5):1137–43. https://doi.org/10.1128/aem.50.5.1137-1143.1985.
Google Scholar
Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact. 2016;15(1):106. https://doi.org/10.1186/s12934-016-0507-6.
Google Scholar
Papzan Z, Kowsari M, Javan-Nikkhah M, Gohari AM, Limon MC. Strain improvement of Trichoderma spp. through two-step protoplast fusion for cellulase production enhancement. Can J Microbiol. 2021;67(5):406–14. https://doi.org/10.1139/cjm-2020-0438.
Google Scholar
Lin YY, Zhao S, Lin X, Zhang T, Li CX, Luo XM, et al. Improvement of cellulase and xylanase production in Penicillium oxalicum under solid-state fermentation by flippase recombination enzyme/ recognition target-mediated genetic engineering of transcription repressors. Bioresour Technol. 2021;337:125366. https://doi.org/10.1016/j.biortech.2021.125366.
Google Scholar
Zhang F, Zhao X, Bai F. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour Technol. 2018;247:676–83. https://doi.org/10.1016/j.biortech.2017.09.126.
Google Scholar
Gao J, Qian Y, Wang Y, Qu Y, Zhong Y. Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. Biotechnol Biofuels. 2017;10:272. https://doi.org/10.1186/s13068-017-0963-1.
Google Scholar
Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y. Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front Microbiol. 2016;7:1349. https://doi.org/10.3389/fmicb.2016.01349.
Google Scholar
Li Z, Chen X, Li Z, Li D, Wang Y, Gao H, et al. Strain improvement of Trichoderma viride for increased cellulase production by irradiation of electron and (12)C(6+)-ion beams. Biotechnol Lett. 2016;38(6):983–9. https://doi.org/10.1007/s10529-016-2066-7.
Google Scholar
Gunny AA, Arbain D, Jamal P, Gumba RE. Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi J Biol Sci. 2015;22(4):476–83. https://doi.org/10.1016/j.sjbs.2014.11.021.
Google Scholar
El-Ghonemy DH, Ali TH, El-Bondkly AM, Moharam Mel S, Talkhan FN. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase. Antonie Van Leeuwenhoek. 2014;106(5):853–64. https://doi.org/10.1007/s10482-014-0255-8.
Google Scholar
Abdeljalil S, Saibi W, Ben Hmad I, Baklouti A, Ben Mahmoud F, Belghith H, et al. Improvement of cellulase and xylanase production by solid-state fermentation of Stachybotrys microspora. Biotechnol Appl Biochem. 2014;61(4):432–40. https://doi.org/10.1002/bab.1195.
Google Scholar
Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, et al. Strain improvement for enhanced production of cellulase in Trichoderma viride. Prikl Biokhim Mikrobiol. 2011;47(1):61–5.
Google Scholar
Vu VH, Pham TA, Kim K. Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology. 2011;39(1):20–5. https://doi.org/10.4489/MYCO.2011.39.1.020.
Google Scholar
Park EY, Naruse K, Kato T. Improvement of cellulase production in cultures of Acremonium cellulolyticus using pretreated waste milk pack with cellulase targeting for biorefinery. Bioresour Technol. 2011;102(10):6120–7. https://doi.org/10.1016/j.biortech.2011.02.063.
Google Scholar
Ma L, Zhang J, Zou G, Wang C, Zhou Z. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol. 2011;49(4):366–71. https://doi.org/10.1016/j.enzmictec.2011.06.013.
Google Scholar
Vu VH, Pham TA, Kim K. Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology. 2009;37(4):267–71. https://doi.org/10.4489/MYCO.2009.37.4.267.
Google Scholar
Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels. 2009;2:19. https://doi.org/10.1186/1754-6834-2-19.
Google Scholar
Jun H, Bing Y, Keying Z, Xuemei D, Daiwen C. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian J Microbiol. 2009;49(2):188–95. https://doi.org/10.1007/s12088-009-0030-0.
Google Scholar
Fang X, Yano S, Inoue H, Sawayama S. Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng. 2009;107(3):256–61. https://doi.org/10.1016/j.jbiosc.2008.11.022.
Google Scholar
Adsul MG, Bastawde KB, Varma AJ, Gokhale DV. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour Technol. 2007;98(7):1467–73. https://doi.org/10.1016/j.biortech.2006.02.036.
Google Scholar
Tamada M, Kasai N, Kaetsu I. Improvement of cellulase activity by immobilization of Sporotrichum cellulophilum. Biotechnol Bioeng. 1989;33(10):1343–6. https://doi.org/10.1002/bit.260331017.
Google Scholar
Han C, Liu YF, Liu MY, Wang SQ, Wang QQ. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site. Int J Biol Macromol. 2020;164:3361–8. https://doi.org/10.1016/j.ijbiomac.2020.08.225.
Google Scholar
Dotsenko AS, Rozhkova AM, Zorov IN, Sinitsyn AP. Protein surface engineering of endoglucanase Penicillium verruculosum for improvement in thermostability and stability in the presence of 1-butyl-3-methylimidazolium chloride ionic liquid. Bioresour Technol. 2020;296:122370. https://doi.org/10.1016/j.biortech.2019.122370.
Google Scholar
Aich S, Datta S. Engineering of a highly thermostable endoglucanase from the GH7 family of Bipolaris sorokiniana for higher catalytic efficiency. Appl Microbiol Biotechnol. 2020;104(9):3935–45. https://doi.org/10.1007/s00253-020-10515-0.
Google Scholar
Bashirova A, Pramanik S, Volkov P, Rozhkova A, Nemashkalov V, Zorov I, et al. Disulfide bond engineering of an endoglucanase from Penicillium verruculosum to improve its thermostability. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20071602.
Google Scholar
Chen X, Li W, Ji P, Zhao Y, Hua C, Han C. Engineering the conserved and noncatalytic residues of a thermostable beta-1,4-endoglucanase to improve specific activity and thermostability. Sci Rep. 2018;8(1):2954. https://doi.org/10.1038/s41598-018-21246-8.
Google Scholar
Tishkov VI, Gusakov AV, Cherkashina AS, Sinitsyn AP. Engineering the pH-optimum of activity of the GH12 family endoglucanase by site-directed mutagenesis. Biochimie. 2013;95(9):1704–10. https://doi.org/10.1016/j.biochi.2013.05.018.
Google Scholar
Qin Y, Wei X, Song X, Qu Y. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol. 2008;135(2):190–5. https://doi.org/10.1016/j.jbiotec.2008.03.016.
Google Scholar
Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, et al. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng. 2005;22(1–3):89–94. https://doi.org/10.1016/j.bioeng.2004.10.003.
Google Scholar
Collen A, Ward M, Tjerneld F, Stalbrand H. Genetic engineering of the Trichoderma reesei endoglucanase I (Cel7B) for enhanced partitioning in aqueous two-phase systems containing thermoseparating ethylene oxide–propylene oxide copolymers. J Biotechnol. 2001;87(2):179–91. https://doi.org/10.1016/s0168-1656(01)00241-3.
Google Scholar
Han C, Wang Q, Sun Y, Yang R, Liu M, Wang S, et al. Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites. Biotechnol Biofuels. 2020;13:30. https://doi.org/10.1186/s13068-020-1668-4.
Google Scholar
Akbarzadeh A, Pourzardosht N, Dehnavi E, Ranaei Siadat SO, Zamani MR, Motallebi M, et al. Disulfide bonds elimination of endoglucanase II from Trichoderma reesei by site-directed mutagenesis to improve enzyme activity and thermal stability: an experimental and theoretical approach. Int J Biol Macromol. 2018;120(Pt B):1572–80. https://doi.org/10.1016/j.ijbiomac.2018.09.164.
Google Scholar
Taylor LE, Knott BC, Baker JO, Alahuhta PM, Hobdey SE, Linger JG, et al. Engineering enhanced cellobiohydrolase activity. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03501-8.
Google Scholar
Michel K, Sluiter J, Payne C, Ness R, Thornton B, Reed M, Schwartz A, Wolfrum E. Determination of Cellulosic Glucan Content in Starch Containing Feedstocks. Laboratory Analytical Procedure (LAP); NREL/TP-2800-76724; National Renewable Energy Laboratory Golden, CO, 2021. https://www.nrel.gov/docs/fy21osti/76724.pdf.
Brunecky R, Knott BC, Subramanian V, Linger JG, Beckham GT, Amore A, et al. Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening. J Biol Chem. 2024. https://doi.org/10.1016/j.jbc.2024.105749.
Google Scholar
Dotsenko AS, Dotsenko GS, Rozhkova AM, Zorov IN, Sinitsyn AP. Rational design and structure insights for thermostability improvement of Penicillium verruculosum Cel7A cellobiohydrolase. Biochimie. 2020;176:103–9. https://doi.org/10.1016/j.biochi.2020.06.007.
Google Scholar
Pramanik S, Semenova MV, Rozhkova M, Zorov IN, Korotkova O, Sinitsyn AP, et al. An engineered cellobiohydrolase I for sustainable degradation of lignocellulosic biomass. Biotechnol Bioeng. 2021;118(10):4014–27. https://doi.org/10.1002/bit.27877.
Google Scholar
Kolaczkowski BM, Schaller KS, Sorensen TH, Peters GHJ, Jensen K, Krogh K, et al. Removal of N-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose. Biotechnol Biofuels. 2020;13:136. https://doi.org/10.1186/s13068-020-01779-9.
Google Scholar
Goedegebuur F, Dankmeyer L, Gualfetti P, Karkehabadi S, Hansson H, Jana S, et al. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution. J Biol Chem. 2017;292(42):17418–30. https://doi.org/10.1074/jbc.M117.803270.
Google Scholar
Becker D, Braet C, Brumer H 3rd, Claeyssens M, Divne C, Fagerstrom BR, et al. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant. Biochem J. 2001;356(Pt 1):19–30. https://doi.org/10.1042/0264-6021:3560019.
Google Scholar
Goodell B, Qian Y, Jellison J. Fungal decay of wood: soft rot—brown rot—white rot. In Development of Commercial Wood Preservatives, ACS Symposium Series, vol. 982; American Chemical Society; 2008. p. 9–31.
Lundell TK, Makela MR, Hilden K. Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol. 2010;50(1):5–20. https://doi.org/10.1002/jobm.200900338.
Google Scholar
Makela MR, Bredeweg EL, Magnuson JK, Baker SE, De Vries RP, Hilden K. Fungal ligninolytic enzymes and their applications. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.FUNK-0017-2016.
Google Scholar
Patel N, Shahane S, Shivam, Majumdar R, Mishra U. Mode of action, properties, production, and application of laccase: a review. Recent Pat Biotechnol. 2019;13(1):19–32. https://doi.org/10.2174/1872208312666180821161015.
Google Scholar
Castano JD, Zhang J, Anderson CE, Schilling JS. Oxidative damage control during decay of wood by brown rot fungus using oxygen radicals. Appl Environ Microbiol. 2018. https://doi.org/10.1128/AEM.01937-18.
Google Scholar
Kachlishvili E, Asatiani MD, Kobakhidze A, Elisashvili V. Evaluation of lignin-modifying enzyme activity of Trametes spp. (Agaricomycetes) isolated from Georgian forests with an emphasis on T. multicolor biosynthetic potential. Int J Med Mushrooms. 2018;20(10):971–87. https://doi.org/10.1615/IntJMedMushrooms.2018028186.
Google Scholar
Dao ATN, Smits M, Dang HTC, Brouwer A, de Boer TE. Elucidating fungal Rigidoporus species FMD21 lignin-modifying enzyme genes and 2,3,7,8-tetrachlorodibenzo-p-dioxin degradation by laccase isozymes. Enzyme Microb Technol. 2021;147:109800. https://doi.org/10.1016/j.enzmictec.2021.109800.
Google Scholar
Fernandes CD, Nascimento VRS, Meneses DB, Vilar DS, Torres NH, Leite MS, et al. Fungal biosynthesis of lignin-modifying enzymes from pulp wash and Luffa cylindrica for azo dye RB5 biodecolorization using modeling by response surface methodology and artificial neural network. J Hazard Mater. 2020;399:123094. https://doi.org/10.1016/j.jhazmat.2020.123094.
Google Scholar
Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, et al. Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol. 2013;141:97–108. https://doi.org/10.1016/j.biortech.2013.01.173.
Google Scholar
Feng Y, Mao L, Chen Y, Gao S. Ligninase-mediated transformation of 4,4’-dibromodiphenyl ether (BDE 15). Environ Sci Pollut Res Int. 2013;20(9):6667–75. https://doi.org/10.1007/s11356-013-1847-y.
Google Scholar
Romero JO, Fernandez-Fueyo E, Avila-Salas F, Recabarren R, Alzate-Morales J, Martinez AT. Binding and catalytic mechanisms of veratryl alcohol oxidation by lignin peroxidase: a theoretical and experimental study. Comput Struct Biotechnol J. 2019;17:1066–74. https://doi.org/10.1016/j.csbj.2019.07.002.
Google Scholar
Houtman CJ, Maligaspe E, Hunt CG, Fernandez-Fueyo E, Martinez AT, Hammel KE. Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. J Biol Chem. 2018;293(13):4702–12. https://doi.org/10.1074/jbc.RA117.001153.
Google Scholar
Lee K, Moon SH. Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. J Biotechnol. 2003;102(3):261–8. https://doi.org/10.1016/s0168-1656(03)00027-0.
Google Scholar
Huang X, Wang D, Liu C, Hu M, Qu Y, Gao P. The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase. Biochem Biophys Res Commun. 2003;311(2):491–4. https://doi.org/10.1016/j.bbrc.2003.10.029.
Google Scholar
Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6(2):e03170. https://doi.org/10.1016/j.heliyon.2020.e03170.
Google Scholar
Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci. 2012;109(14):5458–63. https://doi.org/10.1073/pnas.1119912109.
Google Scholar
Doddapaneni H, Subramanian V, Fu B, Cullen D. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genet Biol. 2013;55:22–31. https://doi.org/10.1016/j.fgb.2013.03.004.
Google Scholar
Zhang L, Wang ZW, Wang Y, Huang B. Transcriptomic profile of lignocellulose degradation from Trametes versicolor on poplar wood. BioResources. 2017;12(2):2507–27.
Google Scholar
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351(6278):1192–5. https://doi.org/10.1126/science.aad1431.
Google Scholar
MacDonald J, Doering M, Canam T, Gong Y, Guttman DS, Campbell MM, et al. Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol. 2011;77(10):3211–8. https://doi.org/10.1128/aem.02490-10.
Google Scholar
Wang J, Suzuki T, Mori T, Yin R, Dohra H, Kawagishi H, et al. Transcriptomics analysis reveals the high biodegradation efficiency of white-rot fungus Phanerochaete sordida YK-624 on native lignin. J Biosci Bioeng. 2021;132(3):253–7. https://doi.org/10.1016/j.jbiosc.2021.05.009.
Google Scholar
Tõlgo M, Hüttner S, Rugbjerg P, Thuy NT, Thanh VN, Larsbrink J, et al. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. Biotechnol Biofuels. 2021;14(1):131. https://doi.org/10.1186/s13068-021-01975-1.
Google Scholar
Korripally P, Hunt CG, Houtman CJ, Jones DC, Kitin PJ, Cullen D, et al. Regulation of gene expression during the onset of ligninolytic oxidation by Phanerochaete chrysosporium on spruce wood. Appl Environ Microbiol. 2015;81(22):7802–12. https://doi.org/10.1128/aem.02064-15.
Google Scholar
Marinović M, Aguilar-Pontes MV, Zhou M, Miettinen O, de Vries RP, Mäkelä MR, et al. Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genet Biol. 2018;112:47–54. https://doi.org/10.1016/j.fgb.2017.07.004.
Google Scholar
Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, et al. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol. 2009;75(12):4058–68. https://doi.org/10.1128/AEM.00314-09.
Google Scholar
Chi YJ, Zhang J. Gene expression of the white-rot fungus Lenzites gibbosa during wood degradation. Mycologia. 2022;114(5):841–56. https://doi.org/10.1080/00275514.2022.2072148.
Google Scholar
Zhu X, Zhou Z, Guo G, Li J, Yan H, Li F. Proteomics and metabolomics analysis of the lignin degradation mechanism of lignin-degrading fungus Aspergillus fumigatus G-13. Anal Methods. 2023;15(8):1062–76. https://doi.org/10.1039/d2ay01446g.
Google Scholar
Duran K, Magnin J, America AHP, Peng M, Hilgers R, de Vries RP, et al. The secretome of Agaricus bisporus: temporal dynamics of plant polysaccharides and lignin degradation. iScience. 2023;26(7):107087. https://doi.org/10.1016/j.isci.2023.107087.
Google Scholar
Gauna A, Larran AS, Feldman SR, Permingeat HR, Perotti VE. Secretome characterization of the lignocellulose-degrading fungi Pycnoporus sanguineus and Ganoderma resinaceum growing on Panicum prionitis biomass. Mycologia. 2021;113(5):877–90. https://doi.org/10.1080/00275514.2021.1922249.
Google Scholar
van Erven G, Hilgers R, Waard Pd, Gladbeek E-J, van Berkel WJH, Kabel MA. Elucidation of in situ ligninolysis mechanisms of the selective white-rot fungus Ceriporiopsis subvermispora. ACS Sustain Chem Eng. 2019;7(19):16757–64. https://doi.org/10.1021/acssuschemeng.9b04235.
Google Scholar
Castaño JD, Muñoz-Muñoz N, Kim YM, Liu J, Yang L, Schilling JS. Metabolomics highlights different life history strategies of white and brown rot wood-degrading fungi. mSphere. 2022;7(6):e0054522. https://doi.org/10.1128/msphere.00545-22.
Google Scholar
Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015;6:5961. https://doi.org/10.1038/ncomms6961.
Google Scholar
Huttner S, Varnai A, Petrovic DM, Bach CX, Kim Anh DT, Thanh VN, et al. Specific xylan activity revealed for AA9 lytic polysaccharide monooxygenases of the thermophilic fungus Malbranchea cinnamomea by functional characterization. Appl Environ Microbiol. 2019;85(23):e01408-e1419. https://doi.org/10.1128/AEM.01408-19.
Google Scholar
Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol. 2018;14(3):306–10. https://doi.org/10.1038/nchembio.2558.
Google Scholar
Courtade G, Aachmann FL. Chitin-Active Lytic Polysaccharide Monooxygenases. Adv Exp Med Biol. 2019;1142:115–29. https://doi.org/10.1007/978-981-13-7318-3_6.
Google Scholar
Zhou X, Xu Z, Li Y, He J, Zhu H. Improvement of the stability and activity of an LPMO through rational disulfide bonds design. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2021.815990.
Google Scholar
Chorozian K, Karnaouri A, Georgaki-Kondyli N, Karantonis A, Topakas E. Assessing the role of redox partners in TthLPMO9G and its mutants: focus on H(2)O(2) production and interaction with cellulose. Biotechnol Biofuels Bioprod. 2024;17(1):19. https://doi.org/10.1186/s13068-024-02463-y.
Google Scholar
Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. Bioresour Bioprocess. 2020;7(1):11. https://doi.org/10.1186/s40643-020-0300-6.
Google Scholar
Stepnov AA, Eijsink VGH, Forsberg Z. Enhanced in situ H2O2 production explains synergy between an LPMO with a cellulose-binding domain and a single-domain LPMO. Sci Rep. 2022;12(1):6129. https://doi.org/10.1038/s41598-022-10096-0.
Google Scholar
Satapathy S, Rout JR, Kerry RG, Thatoi H, Sahoo SL. Biochemical prospects of various microbial pectinase and pectin: an approachable concept in pharmaceutical bioprocessing. Front Nutr. 2020;7:117. https://doi.org/10.3389/fnut.2020.00117.
Google Scholar
Suhaimi N, Ramli S, Malek RA, Aziz R, Othman NZ, Leng OM, et al. Optimization of pectinase production by Aspergillus niger using orange pectin based medium. J Chem Pharm Res. 2016;8(2):259–68.
Google Scholar
Zhao J, Ouyang S, Qi H, Ma K, Hu X, Wang G, et al. Metabolomics and transcriptomics uncover the pectin hydrolysis during tobacco stem fermentation by Aspergillus niger. J Clean Prod. 2024;442:141005. https://doi.org/10.1016/j.jclepro.2024.141005.
Google Scholar
Garrigues S, Kun RS, Peng M, Gruben BS, Benoit Gelber I, Mäkelä M, et al. The cultivation method affects the transcriptomic response of Aspergillus niger to growth on sugar beet pulp. Microbiol Spectr. 2021;9(1):e0106421. https://doi.org/10.1128/Spectrum.01064-21FromNLM.
Google Scholar
El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M. Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol. 2018;18(1):71. https://doi.org/10.1186/s12896-018-0481-7.
Google Scholar
Soccol CR, Costa ESFd, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPdS. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. 2017;1(1):52–71. https://doi.org/10.1016/j.biori.2017.01.002.
Google Scholar
Reginatto C, Rossi C, Miglioranza BG, Santos Md, Meneghel L, Silveira MMd, et al. Pectinase production by Aspergillus niger LB-02-SF is influenced by the culture medium composition and the addition of the enzyme inducer after biomass growth. Process Biochem. 2017;58:1–8. https://doi.org/10.1016/j.procbio.2017.04.018.
Google Scholar
de Vries RP, van de Vondervoort PJ, Hendriks L, van de Belt M, Visser J. Regulation of the alpha-glucuronidase-encoding gene (aguA) from Aspergillus niger. Mol Genet Genomics. 2002;268(1):96–102. https://doi.org/10.1007/s00438-002-0729-7.
Google Scholar
Presley GN, Zhang J, Purvine SO, Schilling JS. Functional genomics, transcriptomics, and proteomics reveal distinct combat strategies between lineages of wood-degrading fungi with redundant wood decay mechanisms. Front Microbiol. 2020;11:1646. https://doi.org/10.3389/fmicb.2020.01646.
Google Scholar
Lin W, Xu X, Lv R, Huang W, Ul Haq H, Gao Y, et al. Differential proteomics reveals main determinants for the improved pectinase activity in UV-mutagenized Aspergillus niger strain. Biotechnol Lett. 2021;43(4):909–18. https://doi.org/10.1007/s10529-020-03075-w.
Google Scholar
Gabriel R, Thieme N, Liu Q, Li F, Meyer LT, Harth S, et al. The f-box protein gene exo-1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2025689118.
Google Scholar
Kun RS, Garrigues S, Di Falco M, Tsang A, de Vries RP. The chimeric GaaR-XlnR transcription factor induces pectinolytic activities in the presence of D-xylose in Aspergillus niger. Appl Microbiol Biotechnol. 2021;105(13):5553–64. https://doi.org/10.1007/s00253-021-11428-2.
Google Scholar
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol. 2023;39(11):305. https://doi.org/10.1007/s11274-023-03741-x.
Google Scholar
Suhaimi N, Ramli S, Malek RA, Aziz R, Othman NZ, Leng OM, et al. Optimization of pectinase production by Aspergillus niger using orange pectin based medium. J Chem Pharm Res. 2016;8:259–68.
Google Scholar
Soccol CR, Costa ESFd, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPS. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. 2017;1:52–71.
Google Scholar
Vries RPd, Vondervoort P, Hendriks L, Belt M, Visser J. Regulation of the α-glucuronidase-encoding gene (aguA) from Aspergillus niger. Mol Genet Genomics. 2002;268:96–102.
Google Scholar
Sinshaw G, Ayele A, Korsa G, Bekele GK, Gemeda MT. Industrially important microbial enzymes production and their applications. In: Microbial enzymes. 2025. p. 149–172.
Salazar-Cerezo S, Kun RS, de Vries RP, Garrigues S. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzyme Microb Technol. 2020;133:109463. https://doi.org/10.1016/j.enzmictec.2019.109463.
Google Scholar
Kun RS, Gomes ACS, Hilden KS, Cerezo SS, Makela MR, de Vries RP. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol Adv. 2019. https://doi.org/10.1016/j.biotechadv.2019.02.017.
Google Scholar
Geisseler D, Horwath WR. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem. 2008;40(12):3040–8. https://doi.org/10.1016/j.soilbio.2008.09.001.
Google Scholar
Vishwanatha KS, Appu Rao AG, Singh SA. Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chem. 2009;114(2):402–7. https://doi.org/10.1016/j.foodchem.2008.09.070.
Google Scholar
Naeem M, Manzoor S, Abid MU, Tareen MBK, Asad M, Mushtaq S, et al. Fungal proteases as emerging biocatalysts to meet the current challenges and recent developments in biomedical therapies: an updated review. J Fungi. 2022. https://doi.org/10.3390/jof8020109.
Google Scholar
de Souza PM, Bittencourt ML, Caprara CC, de Freitas M, de Almeida RP, Silveira D, et al. A biotechnology perspective of fungal proteases. Braz J Microbiol. 2015;46(2):337–46. https://doi.org/10.1590/s1517-838246220140359.
Google Scholar
McKelvey SM, Murphy RA. Biotechnological use of fungal enzymes. In: Fungi. 2017. p. 201–225.
Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, et al. Industrial applications of fungal lipases: a review. Front Microbiol. 2023. https://doi.org/10.3389/fmicb.2023.1142536.
Google Scholar
Mahfoudhi A, Benmabrouk S, Fendri A, Sayari A. Fungal lipases as biocatalysts: a promising platform in several industrial biotechnology applications. Biotechnol Bioeng. 2022;119(12):3370–92. https://doi.org/10.1002/bit.28245.
Google Scholar
Yaver DS, Lamsa M, Munds R, Brown SH, Otani S, Franssen L, et al. Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol. 2000;29(1):28–37. https://doi.org/10.1006/fgbi.1999.1179.
Google Scholar
Adachi D, Hama S, Numata T, Nakashima K, Ogino C, Fukuda H, et al. Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production. Bioresour Technol. 2011;102(12):6723–9. https://doi.org/10.1016/j.biortech.2011.03.066.
Google Scholar
Prathumpai W, Flitter SJ, McIntyre M, Nielsen J. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Appl Microbiol Biotechnol. 2004;65(6):714–9. https://doi.org/10.1007/s00253-004-1699-y.
Google Scholar
Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Technol. 2016;50(17):8923–9. https://doi.org/10.1021/acs.est.6b02204.
Google Scholar
Cheek M, Nic Lughadha E, Kirk P, Lindon H, Carretero J, Looney B, et al. New scientific discoveries: plants and fungi. Plants People Planet. 2020;2(5):371–88. https://doi.org/10.1002/ppp3.10148.
Google Scholar
Meyer V, Wu B, Ram AFJ. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett. 2011;33(3):469–76. https://doi.org/10.1007/s10529-010-0473-8.
Google Scholar
Hubbe MA, Metts JR, Hermosilla D, Blanco MA, Yerushalmi L, Haghighat F, et al. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. Bioresour. 2016;11(3):7953–8091.
Google Scholar
Asadollahzadeh M, Ghasemian A, Saraeian A, Resalati H, Taherzadeh MJ. Production of fungal biomass protein by filamentous fungi cultivation on liquid waste streams from pulping process. BioResources. 2018;13(3):5013–31.
Google Scholar
Alriksson B, Hornberg A, Gudnason AE, Knobloch S, Arnason J, Johannsson R. Fish feed from wood. Cell Chem Technol. 2014;48(9–10):843–8.
Google Scholar
Jin B, Zepf F, Bai ZH, Gao BY, Zhu NW. A biotech-systematic approach to select fungi for bioconversion of winery biomass wastes to nutrient-rich feed. Process Saf Environ. 2016;103:60–8. https://doi.org/10.1016/j.psep.2016.06.034.
Google Scholar
Mondal A, Sengupta S, Bhowal J, Bhattacharya D. Utilization of fruit wastes in producing single cell protein. Int J Sci Environ Technol. 2012;1:430–8.
Jin B, Yu Q, van Leeuwen J. A bioprocessing mode for simultaneous fungal biomass protein production and wastewater treatment using an external air-lift bioreactor. J Chem Technol Biotechnol. 2001;76(10):1041–8. https://doi.org/10.1002/jctb.486.
Google Scholar
Jin B, Yan XQ, Yu Q, van Leeuwen JH. A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation. Adv Environ Res. 2002;6(2):179–89. https://doi.org/10.1016/S1093-0191(01)00049-1.
Google Scholar
Jin B, Yu Q, van Leeuwen JH, Hung Y-T. An integrated biotechnological process for fungal biomass protein production and wastewater reclamation. In: Wang LK, Tay J-H, Tay STL, Hung Y-T, editors. Environmental bioengineering, vol. 11. Totova, NJ: Humana Press; 2010. p. 699–721.
Google Scholar
Nitayavardhana S, Khanal SK. Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresour Technol. 2010;101(23):9078–85. https://doi.org/10.1016/j.biortech.2010.07.048.
Google Scholar
Nitayavardhana S, Issarapayup K, Pavasant P, Khanal SK. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresource Technol. 2013;133:301–6. https://doi.org/10.1016/j.biortech.2013.01.073.
Google Scholar
Rasmussen ML, Khanal SK, Pometto AL, van Leeuwen J. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing. Bioresour Technol. 2014;151:284–90. https://doi.org/10.1016/j.biortech.2013.10.080.
Google Scholar
Batori V, Ferreira JA, Taherzadeh MJ, Lennartsson PR. Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. BioMed Res Int. 2015. https://doi.org/10.1155/2015/176371.
Google Scholar
Ahmed S, Mustafa G, Arshad M, Rajoka MI. Fungal Biomass Protein Production fromTrichoderma harzianumUsing Rice Polishing. BioMed Res Int. 2017. https://doi.org/10.1155/2017/6232793.
Google Scholar
Singh A, Abidi AB, Agrawal AK, Darmwal NS. Single cell protein-production by Aspergillus-niger and its evaluation. Zbl Mikrobiol. 1991;146(3):181–4. https://doi.org/10.1016/S0232-4393(11)80178-2.
Google Scholar
Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol. 2019;6(1):17. https://doi.org/10.1186/s40694-019-0080-y.
Google Scholar
Wattanavichean N, Phanthuwongpakdee J, Koedrith P, Laoratanakul P, Thaithatgoon B, Somrithipol S, et al. Mycelium-based breakthroughs: exploring commercialization, research, and next-gen possibilities. Circ Econ Sustainab. 2025. https://doi.org/10.1007/s43615-025-00539-x.
Google Scholar
Jones M, Mautner A, Luenco S, Bismarck A, John S. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Des. 2020. https://doi.org/10.1016/j.matdes.2019.108397.
Google Scholar
Jones M, Gandia A, John S, Bismarck A. Leather-like material biofabrication using fungi. Nat Sustain. 2021;4(1):9–16. https://doi.org/10.1038/s41893-020-00606-1.
Google Scholar
Garcia C, Prieto MA. Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microb Biotechnol. 2019;12(4):582–5. https://doi.org/10.1111/1751-7915.13306.
Google Scholar
Amobonye A, Lalung J, Awasthi MK, Pillai S. Fungal mycelium as leather alternative: a sustainable biogenic material for the fashion industry. Sustain Mater Technol. 2023;38:e00724. https://doi.org/10.1016/j.susmat.2023.e00724.
Google Scholar
Wosten HAB, Devries OMH, Wessels JGH. Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell. 1993;5(11):1567–74.
Google Scholar
Wosten HAB, Schuren FHJ, Wessels JGH. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J. 1994;13(24):5848–54. https://doi.org/10.1002/j.1460-2075.1994.tb06929.x.
Google Scholar
Wosten HAB, Asgeirsdottir SA, Krook JH, Drenth JHH, Wessels JGH. The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur J Cell Biol. 1994;63(1):122–9.
Google Scholar
Wosten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH. How a fungus escapes the water to grow into the air. Curr Biol. 1999;9(2):85–8. https://doi.org/10.1016/S0960-9822(99)80019-0.
Google Scholar
van Wetter MA, Wosten HAB, Sietsma JH, Wessels JGH. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune. Fungal Genet Biol. 2000;31(2):99–104. https://doi.org/10.1006/fgbi.2000.1231.
Google Scholar
Appels FVW, Dijksterhuis J, Lukasiewicz CE, Jansen KMB, Wosten HAB, Krijgsheld P. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-23171-2.
Google Scholar
Zhong CY. Industrial-scale production and applications of bacterial cellulose. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.605374.
Google Scholar
Zhang X, Hu J, Fan X, Yu X. Naturally grown mycelium-composite as sustainable building insulation materials. J Clean Prod. 2022;342:130784. https://doi.org/10.1016/j.jclepro.2022.130784.
Google Scholar
Karana E, Blauwhoff D, Hultink EJ, Camere S. When the material grows: a case study on designing (with) mycelium-based materials. Int J Des. 2018;12(2):119–36.
Camere S, Karana E. Fabricating materials from living organisms: an emerging design practice. J Clean Prod. 2018;186:570–84. https://doi.org/10.1016/j.jclepro.2018.03.081.
Google Scholar
Attias N, Danai O, Abitbol T, Tarazi E, Ezov N, Pereman I, et al. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2019.119037.
Google Scholar
Girometta C, Picco AM, Baiguera RM, Dondi D, Babbini S, Cartabia M, et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability. 2019. https://doi.org/10.3390/su11010281.
Google Scholar
Sivaprasad S, Byju SK, Prajith C, Shaju J, Rejeesh CR. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater Today Proc. 2021;47:5038–44. https://doi.org/10.1016/j.matpr.2021.04.622.
Google Scholar
Bhardwaj A, Vasselli J, Lucht M, Pei Z, Shaw B, Grasley Z, et al. 3D printing of biomass-fungi composite material: a preliminary study. Manuf Lett. 2020;24:96–9. https://doi.org/10.1016/j.mfglet.2020.04.005.
Google Scholar
Kalisz RE, Rocco CA, Tengler ECJ. Petrella-Lovasik, R. L. Injection molded mycelium and method. US US8313939B2, 2012.
César E, Castillo-Campohermoso MA, Ledezma-Pérez AS, Villarreal-Cárdenas LA, Montoya L, Bandala VM, et al. Guayule bagasse to make mycelium composites: an alternative to enhance the profitability of a sustainable guayule crop. Biocatal Agric Biotechnol. 2023;47:102602. https://doi.org/10.1016/j.bcab.2023.102602.
Google Scholar
Meng D, Mukhitov N, Neitzey D, Lucht M, Schaak DD, Voigt CA. Rapid and simultaneous screening of pathway designs and chassis organisms, applied to engineered living materials. Metab Eng. 2021;66:308–18. https://doi.org/10.1016/j.ymben.2021.01.006.
Google Scholar
McBee RM, Lucht M, Mukhitov N, Richardson M, Srinivasan T, Meng D, et al. Engineering living and regenerative fungal-bacterial biocomposite structures. Nat Mater. 2021. https://doi.org/10.1038/s41563-021-01123-y.
Google Scholar
Sydor M, Bonenberg A, Doczekalska B, Cofta G. Mycelium-based composites in art, architecture, and interior design: a review. Polymers-Basel. 2022;14(1):145.
Google Scholar
Shen SC, Lee NA, Lockett WJ, Acuil AD, Gazdus HB, Spitzer BN, et al. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials. Mater Horiz. 2024;11(7):1689–703. https://doi.org/10.1039/D3MH01277H.
Google Scholar
Elsacker E, Zhang M, Dade-Robertson M. Fungal engineered living materials: the viability of pure mycelium materials with self-healing functionalities. Adv Func Mater. 2023;33(29):2301875. https://doi.org/10.1002/adfm.202301875.
Google Scholar
Sinha A, Greca LG, Kummer N, Wobill C, Reyes C, Fischer P, et al. Living fiber dispersions from mycelium as a new sustainable platform for advanced materials. Adv Mater. 2025;37(22):2418464. https://doi.org/10.1002/adma.202418464.
Google Scholar
Adamatzky A, Ayres P, Beasley AE, Chiolerio A, Dehshibi MM, Gandia A, et al. Fungal electronics. Biosystems. 2022;212:104588. https://doi.org/10.1016/j.biosystems.2021.104588.
Google Scholar
Danninger D, Pruckner R, Holzinger L, Koeppe R, Kaltenbrunner M. MycelioTronics: fungal mycelium skin for sustainable electronics. Sci Adv. 2022;8(45):eadd7118. https://doi.org/10.1126/sciadv.add7118.
Google Scholar
Gandia A, Adamatzky A. Fungal skin for robots. BioSystems. 2024;235:105106. https://doi.org/10.1016/j.biosystems.2023.105106.
Google Scholar
Adamatzky A, Nikolaidou A, Gandia A, Chiolerio A, Dehshibi MM. Reactive fungal wearable. Biosystems. 2021;199:104304. https://doi.org/10.1016/j.biosystems.2020.104304.
Google Scholar
Mishra AK, Kim J, Baghdadi H, Johnson BR, Hodge KT, Shepherd RF. Sensorimotor control of robots mediated by electrophysiological measurements of fungal mycelia. Sci Robot. 2024;9(93):eadk8019. https://doi.org/10.1126/scirobotics.adk8019.
Google Scholar
Li K, Jia J, Wu N, Xu Q. Recent advances in the construction of biocomposites based on fungal mycelia. Front Bioeng Biotechnol. 2022;10:1067869. https://doi.org/10.3389/fbioe.2022.1067869.
Google Scholar
Reyes C, Fivaz E, Sajó Z, Schneider A, Siqueira G, Ribera J, et al. 3D printed cellulose-based fungal battery. ACS Sustain Chem Eng. 2024;12(43):16001–11. https://doi.org/10.1021/acssuschemeng.4c05494.
Google Scholar
Mayne R, Roberts N, Phillips N, Weerasekera R, Adamatzky A. Propagation of electrical signals by fungi. Biosystems. 2023;229:104933. https://doi.org/10.1016/j.biosystems.2023.104933.
Google Scholar
Phillips N, Weerasekera R, Roberts N, Gandia A, Adamatzky A. Electrical signal transfer characteristics of mycelium-bound composites and fungal fruiting bodies. Fungal Ecol. 2024;71:101358. https://doi.org/10.1016/j.funeco.2024.101358.
Google Scholar
Fukasawa Y, Akai D, Takehi T, Osada Y. Electrical integrity and week-long oscillation in fungal mycelia. Sci Rep. 2024;14(1):15601. https://doi.org/10.1038/s41598-024-66223-6.
Google Scholar
Derbyshire EJ, Brameld JM, Wall BT, Thomas P, Arens U, Forde CG, et al. Is there a specific role for fungal protein within food based dietary guidelines? A roundtable discussion. Nutr Bull. 2025;50(3):514–28. https://doi.org/10.1111/nbu.70011.
Google Scholar
Hellwig C, Moshtaghian H, Persson D, Bolton K, Rousta K, Häggblom-Kronlöf G. Glocal and ecoethical perceptions of engagement with fungi-based food. J Clean Prod. 2024;440:140898. https://doi.org/10.1016/j.jclepro.2024.140898.
Google Scholar
Dean D, Rombach M, Vriesekoop F, de Koning W, Aguiar LK, Anderson M, et al. Should i really pay a premium for this? Consumer perspectives on cultured muscle, plant-based and fungal-based protein as meat alternatives. J Int Food Agribus Mark. 2024;36(3):502–26. https://doi.org/10.1080/08974438.2023.2169428.
Google Scholar
Delvendahl N, Dienel H-L, Meyer V, Langen N, Zimmermann J, Schlecht M. Narratives of fungal-based materials for a new bioeconomy era. Innov Eur J Soc Sci Res. 2023;36(1):96–106. https://doi.org/10.1080/13511610.2022.2110453.
Google Scholar
Xing H, Wang J, Sun Y, Wang H. Recent advances in the allergic cross-reactivity between fungi and foods. J Immunol Res. 2022;2022:7583400. https://doi.org/10.1155/2022/7583400.
Google Scholar
Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr Opin Biotechnol. 2020;61:189–97. https://doi.org/10.1016/j.copbio.2019.12.026.
Google Scholar
Matassa S, Boon N, Pikaar I, Verstraete W. Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol. 2016;9(5):568–75. https://doi.org/10.1111/1751-7915.12369.
Google Scholar
Harper A. Amino Acid Scoring Patterns Nations, Joint FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements, 1981; p Item 3.2.3.
Battle M, Bomkamp C, Carter M, Clarke JC, Eastham L, Fathman L, Gertner D, Kirchner J, Leman A, Leet-Otley T. State of the Industry Report: Fermentation: an introduction to a pillar of the alternative protein industry; The Good Food Institute, 2020. https://gfi.org/resource/fermentation-state-of-the-industry-report/.
Souza Filho PF. Fungal protein. Adv Food Nutr Res. 2022;101:153–79. https://doi.org/10.1016/bs.afnr.2022.04.003FromNLM.
Google Scholar
F. B. ENOUGH Ltd. 2023 Sustainability Impact Report; 2024. https://static1.squarespace.com/static/60795d429aac8e2b3c4d04ec/t/663de65048183915acb139e1/1715332712711/ENOUGH+Sustainability+Impact+Report+2023.pdf. Accessed 5 Aug 2025.
Maini Rekdal V, van der Luijt CRB, Chen Y, Kakumanu R, Baidoo EEK, Petzold CJ, et al. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat Commun. 2024;15(1):2099. https://doi.org/10.1038/s41467-024-46314-8.
Google Scholar
Jacobson MF, DePorter J. Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods. Ann Allergy Asthma Immunol. 2018;120(6):626–30. https://doi.org/10.1016/j.anai.2018.03.020.
Google Scholar
Evaluation of allergenicity of genetically modified foods. In: Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology, 2001.
Hileman RE, Silvanovich A, Goodman RE, Rice EA, Holleschak G, Astwood JD, et al. Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. Int Arch Allergy Immunol. 2002;128(4):280–91. https://doi.org/10.1159/000063861.
Google Scholar
Goodman RE, Hefle SL, Taylor SL, van Ree R. Assessing genetically modified crops to minimize the risk of increased food allergy: a review. Int Arch Allergy Immunol. 2005;137(2):153–66. https://doi.org/10.1159/000086314.
Google Scholar
Abdelmoteleb M, Zhang C, Furey B, Kozubal M, Griffiths H, Champeaud M, et al. Evaluating potential risks of food allergy of novel food sources based on comparison of proteins predicted from genomes and compared to www.AllergenOnline.org. Food Chem Toxicol. 2021;147:111888. https://doi.org/10.1016/j.fct.2020.111888.
Google Scholar
Bartholomai BM, Ruwe KM, Thurston J, Jha P, Scaife K, Simon R, et al. Safety evaluation of Neurospora crassa mycoprotein for use as a novel meat alternative and enhancer. Food Chem Toxicol. 2022;168:113342. https://doi.org/10.1016/j.fct.2022.113342.
Google Scholar
Waltz E. Gene-edited CRISPR mushroom escapes US regulation. Nature. 2016;532(7599):293–293. https://doi.org/10.1038/nature.2016.19754.
Google Scholar
Yang Y. Confirmation that transgene-free, CRISPR-edited mushroom is not a regulated article. A personal communication from Pennsylania State University faculty in the Department of Plant Pathology and Environmental Microbiology to the USDA-APHIS Deputy Administrator Dr Michael J. Firko. Agriculture, U. S. D. o., Service, A. a. P. H. I., Eds.; 2015.
Firko MJ. Re: Request for confirmation that transgene-free, CRISPR-edited mushroom is not a regulated article. In: Yang Y, editor. A reply to a personal communication from Dr. Yinong Yang of the College of Agriculture Sciences, Pennsylvania State University. 2016.
Denby CM, Li RA, Vu V, Costello Z, Lin WY, Chan LJG, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03293-x.
Google Scholar
Kadolkar R, Kumar V, Thole A, Patel D, et al. Distributed Biomanufacturing Facilities of the Future. Biotech bioeng. 2025;122(11):3249-65
Google Scholar
Cortesão, M.; Schütze, T.; Marx, R.; Moeller, R.; Meyer, V. Fungal Biotechnology in Space: Why and How? In Grand Challenges in Fungal Biotechnology, Nevalainen, H. Ed.; Springer International Publishing, 2020; pp 501–535.
Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, et al. Microbiomes of the dust particles collected from the International Space Station and spacecraft assembly facilities. Microbiome. 2015;3:50. https://doi.org/10.1186/s40168-015-0116-3.
Google Scholar
Carvalho ND, Arentshorst M, Jin Kwon M, Meyer V, Ram AF. Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol. 2010;87(4):1463–73. https://doi.org/10.1007/s00253-010-2588-1.
Google Scholar
International Space Station – Benefits for Humanity, 3rd edition; NASA, 2018.
Rothschild, L. J.; Maurer, C.; Paulino Lima, I.; Senesky, D.; Wipat, A.; Head III, J.; team, S.-B. i.; Urbina, J.; Averesch, N.; Zajkowski, T. Myco-architecture off planet: growing surface structures at destination. ; Technical Report HQ-E-DAA-TN66707; NASA Ames Research Center, 2018.
