Warming Alaskan rivers affect first-year growth in critical northern food fishes

  • Brown, D. R. N. et al. Changing river ice seasonality and impacts on interior Alaskan communities. Weather Clim. Soc. 10, 625–640. https://doi.org/10.1175/wcas-d-17-0101.1 (2018).

    Article 

    Google Scholar 

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the Globe since 1979. Commun. Earth Environ. 3, 1–10. https://doi.org/10.1038/s43247-022-00498-3 (2022).

    Article 
    ADS 

    Google Scholar 

  • Hinzman, L. D. et al. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim. Change. 72, 251–298. https://doi.org/10.1007/s10584-005-5352-2 (2005).

    Article 
    ADS 

    Google Scholar 

  • Wilson, N. J. The politics of adaptation: subsistence livelihoods and vulnerability to climate change in the Koyukon Athabascan village of ruby, Alaska. Hum. Ecol. 42, 87–101. https://doi.org/10.1007/s10745-013-9619-3 (2014).

    Article 

    Google Scholar 

  • Toohey, R. C., Herman-Mercer, N. M., Schuster, P. F., Mutter, E. A. & Koch, J. C. Multidecadal increases in the Yukon river basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophys. Res. Lett. 43, 12120–12130. https://doi.org/10.1002/2016gl070817 (2016).

    Article 
    ADS 

    Google Scholar 

  • O’Donnell, J. A. et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 5, 268. https://doi.org/10.1038/s43247-024-01446-z (2024).

    Article 
    ADS 

    Google Scholar 

  • Blaskey, D. et al. Increasing Alaskan river discharge during the cold season is driven by recent warming. Environ. Res. Lett. 18, 024042. https://doi.org/10.1088/1748-9326/acb661 (2023).

    Article 
    ADS 

    Google Scholar 

  • Palmer, M. A. et al. Climate change and river ecosystems: protection and adaptation options. Environ. Manage. 44, 1053–1068. https://doi.org/10.1007/s00267-009-9329-1 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Fry, F. E. J. The effect of environmental factors on the physiology of fish. In Fish Physiology (eds Hoar, W. S. & Randall, D. J.) vol. 6, 1–98 (Academic Press, 1971).

    Google Scholar 

  • Ficke, A. D., Myrick, C. A. & Hansen, L. J. Potential impacts of global climate change on freshwater fisheries. Rev. Fish. Biol. Fish. 17, 581–613. https://doi.org/10.1007/s11160-007-9059-5 (2007).

    Article 

    Google Scholar 

  • Lynch, A. J. et al. Climate change effects on North American inland fish populations and assemblages. Fisheries 41, 346–361. https://doi.org/10.1002/fsh.10668 (2016).

    Article 

    Google Scholar 

  • Martins, E. G. et al. Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser river Sockeye salmon (Oncorhynchus Nerka. Glob Change Biol. 17, 99–114. https://doi.org/10.1111/j.1365-2486.2010.02241.x (2011).

    Article 
    ADS 

    Google Scholar 

  • Carothers, C. et al. Indigenous peoples and salmon stewardship: a critical relationship. Ecol. Soc. 26 https://doi.org/10.5751/ES-11972-260116 (2021).

  • Reist, J. D. et al. General effects of climate change on Arctic fishes and fish populations. Ambio 35, 370–380. https://doi.org/10.1579/0044-7447(2006)35[370:geocco]2.0.co;2 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Laske, S. M., Rosenberger, A. E., Wipfli, M. S. & Zimmerman, C. E. Generalist feeding strategies in Arctic freshwater fish: A mechanism for dealing with extreme environments. Ecol. Freshw. Fish. 27, 767–784. https://doi.org/10.1111/eff.12391 (2018).

    Article 

    Google Scholar 

  • Barbarossa, V. et al. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 12 https://doi.org/10.1038/s41467-021-21655-w (2021).

  • Brinkman, T. J. et al. Arctic communities perceive climate impacts on access as a critical challenge to availability of subsistence resources. Clim. Change. 139, 413–427. https://doi.org/10.1007/s10584-016-1819-6 (2016).

    Article 
    ADS 

    Google Scholar 

  • Von Biela, V. R. et al. Premature mortality observations among Alaska’s Pacific salmon during record heat and drought in 2019. Fisheries 47, 157–168. https://doi.org/10.1002/fsh.10705 (2022).

    Article 

    Google Scholar 

  • Murdoch, A. & Power, M. The effect of lake morphometry on thermal habitat use and growth in Arctic Charr populations: implications for Understanding climate-change impacts. Ecol. Freshw. Fish. 22, 453–466. https://doi.org/10.1111/eff.12039 (2013).

    Article 

    Google Scholar 

  • Murdoch, A., Mantyka-Pringle, C. & Sharma, S. Impacts of co-occurring environmental changes on Alaskan stream fishes. Freshw. Biol. 65, 1685–1701. https://doi.org/10.1111/fwb.13569 (2020).

    Article 

    Google Scholar 

  • Courtney, M. B., DeSanto, H. & Seitz, A. C. Is dolly varden in Arctic Alaska increasing in length in a warming climate? J. Fish. Wildl. Manag. 10, 525–530. https://doi.org/10.3996/122018-JFWM-118 (2019).

    Article 

    Google Scholar 

  • Hovel, R. A., Carlson, S. M. & Quinn, T. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback. Glob Change Biol. 23, 2308–2320. https://doi.org/10.1111/gcb.13531 (2017).

    Article 
    ADS 

    Google Scholar 

  • Shaftel, R., Jones, L., Mauger, S. & Merrigan, D. Stream Temperature Models and Applications in the Anchor, Kenai and Deshka River Watersheds. A report submitted to the U.S. Fish and Wildlife Service on behalf of the Mat-Su Basin Salmon Habitat Partnership and the Kenai Peninsula Fish Habitat Partnership. (2020).

  • Von Biela, V. R. et al. Evidence of prevalent heat stress in Yukon river Chinook salmon. Can. J. Fish. Aquat. Sci. 77, 1878–1892. https://doi.org/10.1139/cjfas-2020-0209 (2020).

    Article 

    Google Scholar 

  • Mejia, F. H. et al. Closing the gap between science and management of cold-water refuges in rivers and streams. Glob Change Biol. 29, 5482–5508. https://doi.org/10.1111/gcb.16844 (2023).

    Article 
    CAS 

    Google Scholar 

  • Jacobson, S. A. Yupik Eskimo dictionary. vol. 2 https://beringstraits.com/wp-content/uploads/2024/01/Yupik_Eskimo_Dictonary_Vol_2.pdf (2012).

  • Gwich’in Social and Cultural Institute. Gwich’in topical dictionary. https://gwichin.ca/sites/default/files/gsci_gsci_2009_gwichin_topical_dictionary.pdf (2009).

  • North Slope Science Initiative. Master list of species on the North Slope. https://www.north-slope.org/wpcontent/uploads/2022/04/MASTER_LIST_OF_SPECIES_ON_NORTH_SLOPE_Oct_2014.pdf (2014).

  • Herman-Mercer, N. M. et al. The Arctic rivers project: using an equitable co-production framework for integrating meaningful community engagement and science to understand climate impacts. Community Sci 2 https://doi.org/p.e2022CSJ000024 (2023).

  • Fisheries and Oceans Canada & Alaska Department of Fish and Game. Agreement of April 1, 2024 regarding Canadian-origin Yukon River Chinook Salmon for 2024 through 2030. https://www.pac.dfo-mpo.gc.ca/fm-gp/salmon-saumon/yukon-chinook-agreement-quinnat-accord/index-eng.html (2024).

  • Alaska Department of Fish and Game. Community Subsistence Information System (CSIS) Data Downloader https://adfg-ak-subsistence.shinyapps.io/CSIS-Data-Downloader/ (2025).

  • DeCicco, A. L. Inventory and cataloging of sport fish and sport fish waters of Western Alaska with emphasis on Arctic Char life history studies. AK Dept Fish. Game Sport Fish. Div. Fed. Aid Fish. Restor. Annu. Rep. Prog Project F-. 9-17 (26), 41–134 (1985).

    Google Scholar 

  • Brown, C. L. et al. Alaska Subsistence and Personal Use Salmon Fisheries 2020 Annual Report. Alsk. Dep. Fish Game Div. Subsist. Tech. Pap. (2023).

  • Reiser, D. W. & Bjornn, T. C. Influence of forest and rangeland management on anadromous fish habitat in Western North america: habitat requirements of anadromous salmonids. Gen. Tech. Rep. PNW-GTR-096. Portland, OR: U.S. Department of agriculture, forest service. Pacific Northwest. Res. Station 1–54 (1979).

  • British Columbia Ministry of Water, Land, and Air Protection. Ambient water quality guidelines for temperature: overview. (2001).

  • Murray, C. B., Henderson, M. A. & Beacham, T. O. Size and scale characteristics of upper Yukon river juvenile Chinook salmon (Oncorhvnchus Tschawytscha. Can. Tech. Rep. Fish. Aquat. Sci. 1767, 19 1–19 (1990).

    Google Scholar 

  • Beauchamp, D. A. et al. Bioenergetic responses by Pacific salmon to climate and ecosystem variation. North. Pac. Anadromous Fish. Comm. Bull. 4, 257–269 (2007).

    Google Scholar 

  • Stewart, D. B., Mochnacz, N., Carmichael, T. J., Sawatzky, C. D. & Reist, J. Fish diets and food webs of the Northwest Territories: Dolly Varden (Salvelinus malma). Can. Manuscr. Rep. Fish. Aquat. Sci. 2915, Vi + 63, (2010).

  • Carey, M., Biela, V., Brown, R. & Zimmerman, C. Migration strategies supporting salmonids in Arctic rivers: A case study of Arctic Cisco and dolly varden. Anim. Migr. 8, 132–143. https://doi.org/10.1515/ami-2020-0115 (2021).

    Article 

    Google Scholar 

  • DeMaster, D. et al. Food security crisis in the Yukon river basin: where have the salmon gone and what can be done? Arct. Antarct. Alp. Res. 57 https://doi.org/10.1080/15230430.2025.2510793 (2025).

  • Leppi, J. C. et al. Climate change risks to freshwater subsistence fisheries in Arctic alaska: insights and uncertainty from broad Whitefish Coregonus nasus. Fisheries 48, 295–306. https://doi.org/10.1002/fsh.10918 (2023).

    Article 

    Google Scholar 

  • Feddern, M. L. et al. Kings of the north: bridging disciplines to understand the effects of changing climate on Chinook salmon in the Arctic–Yukon–Kuskokwim region. Fisheries 48, 331–343. https://doi.org/10.1002/fsh.10923 (2023).

    Article 

    Google Scholar 

  • Deslauriers, D., Chipps, S. R., Breck, J. E., Rice, J. A. & Madenjian, C. P. Fish bioenergetics 4.0: an R-based modeling application. Fisheries 42, 586–596. https://doi.org/10.1080/03632415.2017.1377558 (2017).

    Article 

    Google Scholar 

  • Brownscombe, J. W. et al. Applied fish bioenergetics. Fish. Physiol. 39, 141–188. https://doi.org/10.1016/bs.fp.2022.04.004 (2022).

    Article 

    Google Scholar 

  • Cheng, Y. et al. Moving land models toward more actionable science: a novel application of the community terrestrial systems model across Alaska and the Yukon river basin. Water Resour. Res. 59 https://doi.org/10.1029/2022WR032204 (2023).

  • Cheng, Y. et al. Coupled high-resolution land-atmosphere modeling for hydroclimate and terrestrial hydrology in Alaska and the Yukon river basin (1990–2021). J. Geophys. Res. https://doi.org/10.1029/2024JD041185 (2025).

    Article 

    Google Scholar 

  • Blaskey, D. et al. A high-resolution, daily hindcast (1990–2021) of Alaskan river discharge and temperature from coupled and optimized physical models. Water Resour. Res. 60. https://doi.org/10.1029/2023WR036217 (2024).

  • Sethi, S. A. et al. Juvenile salmon habitat use drives variation in growth and highlights vulnerability to river fragmentation. Ecosphere 13, 4192. https://doi.org/10.1002/ecs2.4192 (2022).

    Article 

    Google Scholar 

  • Yamazaki, D. et al. MERIT hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073. https://doi.org/10.1029/2019WR024873 (2019).

    Article 
    ADS 

    Google Scholar 

  • Census, U. S. & Bureau cb_2018_state_5m.zip, Cartographic Boundary Files-Shapefiles https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html (2018).

  • Fullerton, A. H. et al. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape. Ecosphere 8, 12. https://doi.org/10.1002/ecs2.2052 (2017).

    Article 

    Google Scholar 

  • Falke, J. A., Huntsman, B. M. & Schoen, E. R. Climatic variation drives growth potential of juvenile Chinook Salmon along a subarctic boreal riverscape. In Advances in Understanding Landscape Influences on Freshwater Habitats and Biological Assemblages (eds Hughes, R. M. et al.) vol. Symposium 90, 57–82 https://doi.org/10.47886/9781934874561.ch4 (American Fisheries Society Symposium, 2019).

  • Hobbie, J. E. et al. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res. 18, 207–214. https://doi.org/10.3402/polar.v18i2.6576 (1999).

    Article 

    Google Scholar 

  • Gurney, K. E. B., Koch, J. C., Schmutz, J. A., Schmidt, J. H. & Wipfli, M. S. In hot water? Patterns of macroinvertebrate abundance in Arctic thaw ponds and relationships with environmental variables. Freshw. Biol. 67, 1832–1844. https://doi.org/10.1111/fwb.13978 (2022).

    Article 

    Google Scholar 

  • Grunblatt, J., Meyer, B. E. & Wipfli, M. S. Invertebrate prey contributions to juvenile Coho salmon diet from riparian habitats along three Alaska streams: implications for environmental change. J. Freshw. Ecol. 34, 617–631. https://doi.org/10.1080/02705060.2019.1642243 (2019).

    Article 
    CAS 

    Google Scholar 

  • Feddern, M. L. et al. Body size and early marine conditions drive changes in Chinook salmon productivity across Northern latitude ecosystems. Glob Change Biol. 30, 17508. https://doi.org/10.1111/gcb.17508 (2024).

    Article 
    CAS 

    Google Scholar 

  • Herman-Mercer, N., Schuster, P. F. & Maracle, K. B. Indigenous observations of climate change in the lower Yukon river basin, Alaska. Hum. Organ. 70, 244–252. https://doi.org/10.17730/humo.70.3.v88841235897071m (2011).

    Article 

    Google Scholar 

  • Railsback, S. F. What we don’t know about the effects of temperature on salmonid growth. Trans. Am. Fish. Soc. 151, 3–12. https://doi.org/10.1002/tafs.10338 (2022).

    Article 

    Google Scholar 

  • Bell, D. A., Kovach, R. P., Vulstek, S. C., Joyce, J. E. & Tallmon, D. A. Climate-induced trends in predator–prey synchrony differ across life-history stages of an anadromous salmonid. Can. J. Fish. Aquat. Sci. 74, 1431–1438. https://doi.org/10.1139/cjfas-2016-0309 (2017). https://doi-org.colorado.idm.oclc

    Article 

    Google Scholar 

  • Walker, R. H., Maitland, B. M., LaSharr, T. N., Rosing, M. N. & Ben-David, M. Fate of juvenile salmonids stranded in off-channel pools: implications for nutrient transfers. Aquat. Sci. 80, 10. https://doi.org/10.1007/s00027-017-0562-z (2018). https://doi-org.colorado.idm.oclc

    Article 
    CAS 

    Google Scholar 

  • Blaskey, D. et al. Alaskan river discharge, temperature, and climate data for a climate reference (1990–2021) and at mid-century (2034–2065). Arct. Data Cent. https://doi.org/10.18739/A2125QB7M (2024).

    Article 

    Google Scholar 

  • Blaskey, D. et al. Alaskan hydrology in transition: changing precipitation and evapotranspiration patterns are projected to reshape seasonal streamflow and water temperature by mid-century (2035–2064). J. Hydrometeorol. https://doi.org/10.1175/JHM-D-24-0121.1 (2025).

    Article 

    Google Scholar 

  • Milner, A. M. et al. Evolution of a stream ecosystem in recently deglaciated terrain. Ecology 92, 1924–1935. https://doi.org/10.1890/10-2007.1 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pitman, K. J. Glacier retreat creating new Pacific salmon habitat in Western North America. Nat. Commun. 12, 6816. https://doi.org/10.1038/s41467-021-26897-2 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arctic Rivers Project Proceedings of the Arctic Rivers Summit. Summary of a Three-Day Workshop. https://www.colorado.edu/research/arctic-rivers/media/90 (University of Colorado Boulder, 2025).

  • Brett, J. R. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Board. Can. 9, 265–323 (1952).

    Google Scholar 

  • Scott, W. B. & Crossman, E. J. Freshwater Fishes of Canada (Fisheries Research Board of Canada, 1973).

  • Rinella, D. J., Wipfli, M. S., Stricker, C. A., Heintz, R. A. & Rinella, M. J. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density. Can. J. Fish. Aquat. Sci. 69, 73–84. https://doi.org/10.1139/f2011-133 (2012).

    Article 
    CAS 

    Google Scholar 

  • Molyneaux, D. B. Fish community survey of the Salmon and Aniak rivers. In Alaska Department of Fish and Game, trip report under permit SF2023-176a (Anchorage, 2024).

  • MacLean, N. Genetic and Environmental Factors Affecting the Physiology and Ecology of Lake Trout (Lake Trout Synthesis, 1990).

  • Scannell, P. K. Influence of temperature on freshwater fishes: A literature review with emphasis on species in Alaska (Alaska Department of Fish and, 1992).

  • Johnson, L. The Arctic charr, Salvelinus alpinus. Dr W Junk Hague 15–98 (1980).

  • Siikavuopio, S. I., Sæther, B. S., Johnsen, H., Evensen, T. & R, K. Temperature preference of juvenile Arctic Charr originating from different thermal environments. Aquat. Ecol. 48, 313–320. https://doi.org/10.1007/s10452-014-9485-0 (2014).

    Article 
    CAS 

    Google Scholar 

  • McMahon, T. E., Zale, A. V., Barrows, F. T., Selong, J. H. & Danehy, R. J. Temperature and competition between bull trout and brook trout: a test of the elevation refuge hypothesis. Trans. Am. Fish. Soc. 136, 1313–1326. https://doi.org/10.1577/T06-217.1 (2007).

    Article 

    Google Scholar 

  • Thurow, R. F., Peterson, J. T., Chandler, G. L., Moffitt, C. M. & Bjornn, T. C. Concealment of juvenile bull trout in response to temperature, light, and substrate: implications for detection. PloS One. 15, 0237716. https://doi.org/10.1371/journal.pone.0237716 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rombough, P. J. Growth, aerobic metabolism, and dissolved oxygen requirements of embryos and Alevins of steelhead, Salmo gairdneri. Can. J. Zool. 66, 651–660. https://doi.org/10.1139/z88-097 (1988).

    Article 

    Google Scholar 

  • Del Rio, A. M. Differential sensitivity to warming and hypoxia during development and long-term effects of developmental exposure in early life stage Chinook salmon. Conserv. Physiol. 9 https://doi.org/10.1093/conphys/coab054 (2021).

  • Winberg, G. G. Rate of Metabolism and Food Requirements of Fishes (Byelorussian University, 1956).

  • Stewart, D. J. & Ibarra, M. Predation and production by salmonine fishes in lake Michigan, 1978–88. Can. J. Fish. Aquat. Sci. 48, 909–922. https://doi.org/10.1139/f91-107 (1991).

    Article 

    Google Scholar 

  • Plumb, J. M. & Moffitt, C. M. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon. Trans. Am. Fish. Soc. 144, 323–330. https://doi.org/10.1080/00028487.2014.986336 (2015).

    Article 

    Google Scholar 

  • Meyer, B. E., Wipfli, M. S., Schoen, E. R., Rinella, D. J. & Falke, J. A. Landscape characteristics influence projected growth rates of stream-resident juvenile salmon in the face of climate change in the Kenai river watershed, south-central Alaska. Trans. Am. Fish. Soc. 152, 169–186. https://doi.org/10.1002/tafs.10397 (2023).

    Article 

    Google Scholar 

  • Shaftel, R., Merrigan, D., Geist, M. & Walker, J. AKTEMP: Presenting a fully functional stream and lake temperature database for Alaska. In Alaska Section American Water Resources Association 2023 Annual Meeting (Anchorage, 2023).

  • Chipps, S. R. & Wahl, D. H. Bioenergetics modeling in the 21st century. Rev. New. Insights Revisiting Old Constraints Trans. Am. Fish. Soc. 137, 298–313. https://doi.org/10.1577/T05-236.1 (2008).

    Article 

    Google Scholar 

  • Fan, X., Duan, Q., Shen, C., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15, 104056. https://doi.org/10.1088/1748-9326/abb051 (2020).

    Article 
    ADS 

    Google Scholar 

  • Meinshausen, M. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model. Dev. 13, 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Anchorage Daily News. Feds recognize Native names of major Alaska river system. (2015).

  • Thomas, P. A. Arctic Rivers Project Bioenergetics [Data set]. https://github.com/peyton-thomas/ArcticRiversProjectBioenergetics/tree/main.

  • Continue Reading