Brown, D. R. N. et al. Changing river ice seasonality and impacts on interior Alaskan communities. Weather Clim. Soc. 10, 625–640. https://doi.org/10.1175/wcas-d-17-0101.1 (2018).
Google Scholar
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the Globe since 1979. Commun. Earth Environ. 3, 1–10. https://doi.org/10.1038/s43247-022-00498-3 (2022).
Google Scholar
Hinzman, L. D. et al. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim. Change. 72, 251–298. https://doi.org/10.1007/s10584-005-5352-2 (2005).
Google Scholar
Wilson, N. J. The politics of adaptation: subsistence livelihoods and vulnerability to climate change in the Koyukon Athabascan village of ruby, Alaska. Hum. Ecol. 42, 87–101. https://doi.org/10.1007/s10745-013-9619-3 (2014).
Google Scholar
Toohey, R. C., Herman-Mercer, N. M., Schuster, P. F., Mutter, E. A. & Koch, J. C. Multidecadal increases in the Yukon river basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophys. Res. Lett. 43, 12120–12130. https://doi.org/10.1002/2016gl070817 (2016).
Google Scholar
O’Donnell, J. A. et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 5, 268. https://doi.org/10.1038/s43247-024-01446-z (2024).
Google Scholar
Blaskey, D. et al. Increasing Alaskan river discharge during the cold season is driven by recent warming. Environ. Res. Lett. 18, 024042. https://doi.org/10.1088/1748-9326/acb661 (2023).
Google Scholar
Palmer, M. A. et al. Climate change and river ecosystems: protection and adaptation options. Environ. Manage. 44, 1053–1068. https://doi.org/10.1007/s00267-009-9329-1 (2009).
Google Scholar
Fry, F. E. J. The effect of environmental factors on the physiology of fish. In Fish Physiology (eds Hoar, W. S. & Randall, D. J.) vol. 6, 1–98 (Academic Press, 1971).
Ficke, A. D., Myrick, C. A. & Hansen, L. J. Potential impacts of global climate change on freshwater fisheries. Rev. Fish. Biol. Fish. 17, 581–613. https://doi.org/10.1007/s11160-007-9059-5 (2007).
Google Scholar
Lynch, A. J. et al. Climate change effects on North American inland fish populations and assemblages. Fisheries 41, 346–361. https://doi.org/10.1002/fsh.10668 (2016).
Google Scholar
Martins, E. G. et al. Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser river Sockeye salmon (Oncorhynchus Nerka. Glob Change Biol. 17, 99–114. https://doi.org/10.1111/j.1365-2486.2010.02241.x (2011).
Google Scholar
Carothers, C. et al. Indigenous peoples and salmon stewardship: a critical relationship. Ecol. Soc. 26 https://doi.org/10.5751/ES-11972-260116 (2021).
Reist, J. D. et al. General effects of climate change on Arctic fishes and fish populations. Ambio 35, 370–380. https://doi.org/10.1579/0044-7447(2006)35[370:geocco]2.0.co;2 (2006).
Google Scholar
Laske, S. M., Rosenberger, A. E., Wipfli, M. S. & Zimmerman, C. E. Generalist feeding strategies in Arctic freshwater fish: A mechanism for dealing with extreme environments. Ecol. Freshw. Fish. 27, 767–784. https://doi.org/10.1111/eff.12391 (2018).
Google Scholar
Barbarossa, V. et al. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 12 https://doi.org/10.1038/s41467-021-21655-w (2021).
Brinkman, T. J. et al. Arctic communities perceive climate impacts on access as a critical challenge to availability of subsistence resources. Clim. Change. 139, 413–427. https://doi.org/10.1007/s10584-016-1819-6 (2016).
Google Scholar
Von Biela, V. R. et al. Premature mortality observations among Alaska’s Pacific salmon during record heat and drought in 2019. Fisheries 47, 157–168. https://doi.org/10.1002/fsh.10705 (2022).
Google Scholar
Murdoch, A. & Power, M. The effect of lake morphometry on thermal habitat use and growth in Arctic Charr populations: implications for Understanding climate-change impacts. Ecol. Freshw. Fish. 22, 453–466. https://doi.org/10.1111/eff.12039 (2013).
Google Scholar
Murdoch, A., Mantyka-Pringle, C. & Sharma, S. Impacts of co-occurring environmental changes on Alaskan stream fishes. Freshw. Biol. 65, 1685–1701. https://doi.org/10.1111/fwb.13569 (2020).
Google Scholar
Courtney, M. B., DeSanto, H. & Seitz, A. C. Is dolly varden in Arctic Alaska increasing in length in a warming climate? J. Fish. Wildl. Manag. 10, 525–530. https://doi.org/10.3996/122018-JFWM-118 (2019).
Google Scholar
Hovel, R. A., Carlson, S. M. & Quinn, T. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback. Glob Change Biol. 23, 2308–2320. https://doi.org/10.1111/gcb.13531 (2017).
Google Scholar
Shaftel, R., Jones, L., Mauger, S. & Merrigan, D. Stream Temperature Models and Applications in the Anchor, Kenai and Deshka River Watersheds. A report submitted to the U.S. Fish and Wildlife Service on behalf of the Mat-Su Basin Salmon Habitat Partnership and the Kenai Peninsula Fish Habitat Partnership. (2020).
Von Biela, V. R. et al. Evidence of prevalent heat stress in Yukon river Chinook salmon. Can. J. Fish. Aquat. Sci. 77, 1878–1892. https://doi.org/10.1139/cjfas-2020-0209 (2020).
Google Scholar
Mejia, F. H. et al. Closing the gap between science and management of cold-water refuges in rivers and streams. Glob Change Biol. 29, 5482–5508. https://doi.org/10.1111/gcb.16844 (2023).
Google Scholar
Jacobson, S. A. Yupik Eskimo dictionary. vol. 2 https://beringstraits.com/wp-content/uploads/2024/01/Yupik_Eskimo_Dictonary_Vol_2.pdf (2012).
Gwich’in Social and Cultural Institute. Gwich’in topical dictionary. https://gwichin.ca/sites/default/files/gsci_gsci_2009_gwichin_topical_dictionary.pdf (2009).
North Slope Science Initiative. Master list of species on the North Slope. https://www.north-slope.org/wpcontent/uploads/2022/04/MASTER_LIST_OF_SPECIES_ON_NORTH_SLOPE_Oct_2014.pdf (2014).
Herman-Mercer, N. M. et al. The Arctic rivers project: using an equitable co-production framework for integrating meaningful community engagement and science to understand climate impacts. Community Sci 2 https://doi.org/p.e2022CSJ000024 (2023).
Fisheries and Oceans Canada & Alaska Department of Fish and Game. Agreement of April 1, 2024 regarding Canadian-origin Yukon River Chinook Salmon for 2024 through 2030. https://www.pac.dfo-mpo.gc.ca/fm-gp/salmon-saumon/yukon-chinook-agreement-quinnat-accord/index-eng.html (2024).
Alaska Department of Fish and Game. Community Subsistence Information System (CSIS) Data Downloader https://adfg-ak-subsistence.shinyapps.io/CSIS-Data-Downloader/ (2025).
DeCicco, A. L. Inventory and cataloging of sport fish and sport fish waters of Western Alaska with emphasis on Arctic Char life history studies. AK Dept Fish. Game Sport Fish. Div. Fed. Aid Fish. Restor. Annu. Rep. Prog Project F-. 9-17 (26), 41–134 (1985).
Brown, C. L. et al. Alaska Subsistence and Personal Use Salmon Fisheries 2020 Annual Report. Alsk. Dep. Fish Game Div. Subsist. Tech. Pap. (2023).
Reiser, D. W. & Bjornn, T. C. Influence of forest and rangeland management on anadromous fish habitat in Western North america: habitat requirements of anadromous salmonids. Gen. Tech. Rep. PNW-GTR-096. Portland, OR: U.S. Department of agriculture, forest service. Pacific Northwest. Res. Station 1–54 (1979).
British Columbia Ministry of Water, Land, and Air Protection. Ambient water quality guidelines for temperature: overview. (2001).
Murray, C. B., Henderson, M. A. & Beacham, T. O. Size and scale characteristics of upper Yukon river juvenile Chinook salmon (Oncorhvnchus Tschawytscha. Can. Tech. Rep. Fish. Aquat. Sci. 1767, 19 1–19 (1990).
Beauchamp, D. A. et al. Bioenergetic responses by Pacific salmon to climate and ecosystem variation. North. Pac. Anadromous Fish. Comm. Bull. 4, 257–269 (2007).
Stewart, D. B., Mochnacz, N., Carmichael, T. J., Sawatzky, C. D. & Reist, J. Fish diets and food webs of the Northwest Territories: Dolly Varden (Salvelinus malma). Can. Manuscr. Rep. Fish. Aquat. Sci. 2915, Vi + 63, (2010).
Carey, M., Biela, V., Brown, R. & Zimmerman, C. Migration strategies supporting salmonids in Arctic rivers: A case study of Arctic Cisco and dolly varden. Anim. Migr. 8, 132–143. https://doi.org/10.1515/ami-2020-0115 (2021).
Google Scholar
DeMaster, D. et al. Food security crisis in the Yukon river basin: where have the salmon gone and what can be done? Arct. Antarct. Alp. Res. 57 https://doi.org/10.1080/15230430.2025.2510793 (2025).
Leppi, J. C. et al. Climate change risks to freshwater subsistence fisheries in Arctic alaska: insights and uncertainty from broad Whitefish Coregonus nasus. Fisheries 48, 295–306. https://doi.org/10.1002/fsh.10918 (2023).
Google Scholar
Feddern, M. L. et al. Kings of the north: bridging disciplines to understand the effects of changing climate on Chinook salmon in the Arctic–Yukon–Kuskokwim region. Fisheries 48, 331–343. https://doi.org/10.1002/fsh.10923 (2023).
Google Scholar
Deslauriers, D., Chipps, S. R., Breck, J. E., Rice, J. A. & Madenjian, C. P. Fish bioenergetics 4.0: an R-based modeling application. Fisheries 42, 586–596. https://doi.org/10.1080/03632415.2017.1377558 (2017).
Google Scholar
Brownscombe, J. W. et al. Applied fish bioenergetics. Fish. Physiol. 39, 141–188. https://doi.org/10.1016/bs.fp.2022.04.004 (2022).
Google Scholar
Cheng, Y. et al. Moving land models toward more actionable science: a novel application of the community terrestrial systems model across Alaska and the Yukon river basin. Water Resour. Res. 59 https://doi.org/10.1029/2022WR032204 (2023).
Cheng, Y. et al. Coupled high-resolution land-atmosphere modeling for hydroclimate and terrestrial hydrology in Alaska and the Yukon river basin (1990–2021). J. Geophys. Res. https://doi.org/10.1029/2024JD041185 (2025).
Google Scholar
Blaskey, D. et al. A high-resolution, daily hindcast (1990–2021) of Alaskan river discharge and temperature from coupled and optimized physical models. Water Resour. Res. 60. https://doi.org/10.1029/2023WR036217 (2024).
Sethi, S. A. et al. Juvenile salmon habitat use drives variation in growth and highlights vulnerability to river fragmentation. Ecosphere 13, 4192. https://doi.org/10.1002/ecs2.4192 (2022).
Google Scholar
Yamazaki, D. et al. MERIT hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073. https://doi.org/10.1029/2019WR024873 (2019).
Google Scholar
Census, U. S. & Bureau cb_2018_state_5m.zip, Cartographic Boundary Files-Shapefiles https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html (2018).
Fullerton, A. H. et al. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape. Ecosphere 8, 12. https://doi.org/10.1002/ecs2.2052 (2017).
Google Scholar
Falke, J. A., Huntsman, B. M. & Schoen, E. R. Climatic variation drives growth potential of juvenile Chinook Salmon along a subarctic boreal riverscape. In Advances in Understanding Landscape Influences on Freshwater Habitats and Biological Assemblages (eds Hughes, R. M. et al.) vol. Symposium 90, 57–82 https://doi.org/10.47886/9781934874561.ch4 (American Fisheries Society Symposium, 2019).
Hobbie, J. E. et al. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res. 18, 207–214. https://doi.org/10.3402/polar.v18i2.6576 (1999).
Google Scholar
Gurney, K. E. B., Koch, J. C., Schmutz, J. A., Schmidt, J. H. & Wipfli, M. S. In hot water? Patterns of macroinvertebrate abundance in Arctic thaw ponds and relationships with environmental variables. Freshw. Biol. 67, 1832–1844. https://doi.org/10.1111/fwb.13978 (2022).
Google Scholar
Grunblatt, J., Meyer, B. E. & Wipfli, M. S. Invertebrate prey contributions to juvenile Coho salmon diet from riparian habitats along three Alaska streams: implications for environmental change. J. Freshw. Ecol. 34, 617–631. https://doi.org/10.1080/02705060.2019.1642243 (2019).
Google Scholar
Feddern, M. L. et al. Body size and early marine conditions drive changes in Chinook salmon productivity across Northern latitude ecosystems. Glob Change Biol. 30, 17508. https://doi.org/10.1111/gcb.17508 (2024).
Google Scholar
Herman-Mercer, N., Schuster, P. F. & Maracle, K. B. Indigenous observations of climate change in the lower Yukon river basin, Alaska. Hum. Organ. 70, 244–252. https://doi.org/10.17730/humo.70.3.v88841235897071m (2011).
Google Scholar
Railsback, S. F. What we don’t know about the effects of temperature on salmonid growth. Trans. Am. Fish. Soc. 151, 3–12. https://doi.org/10.1002/tafs.10338 (2022).
Google Scholar
Bell, D. A., Kovach, R. P., Vulstek, S. C., Joyce, J. E. & Tallmon, D. A. Climate-induced trends in predator–prey synchrony differ across life-history stages of an anadromous salmonid. Can. J. Fish. Aquat. Sci. 74, 1431–1438. https://doi.org/10.1139/cjfas-2016-0309 (2017). https://doi-org.colorado.idm.oclc
Google Scholar
Walker, R. H., Maitland, B. M., LaSharr, T. N., Rosing, M. N. & Ben-David, M. Fate of juvenile salmonids stranded in off-channel pools: implications for nutrient transfers. Aquat. Sci. 80, 10. https://doi.org/10.1007/s00027-017-0562-z (2018). https://doi-org.colorado.idm.oclc
Google Scholar
Blaskey, D. et al. Alaskan river discharge, temperature, and climate data for a climate reference (1990–2021) and at mid-century (2034–2065). Arct. Data Cent. https://doi.org/10.18739/A2125QB7M (2024).
Google Scholar
Blaskey, D. et al. Alaskan hydrology in transition: changing precipitation and evapotranspiration patterns are projected to reshape seasonal streamflow and water temperature by mid-century (2035–2064). J. Hydrometeorol. https://doi.org/10.1175/JHM-D-24-0121.1 (2025).
Google Scholar
Milner, A. M. et al. Evolution of a stream ecosystem in recently deglaciated terrain. Ecology 92, 1924–1935. https://doi.org/10.1890/10-2007.1 (2011).
Google Scholar
Pitman, K. J. Glacier retreat creating new Pacific salmon habitat in Western North America. Nat. Commun. 12, 6816. https://doi.org/10.1038/s41467-021-26897-2 (2021).
Google Scholar
Arctic Rivers Project Proceedings of the Arctic Rivers Summit. Summary of a Three-Day Workshop. https://www.colorado.edu/research/arctic-rivers/media/90 (University of Colorado Boulder, 2025).
Brett, J. R. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Board. Can. 9, 265–323 (1952).
Scott, W. B. & Crossman, E. J. Freshwater Fishes of Canada (Fisheries Research Board of Canada, 1973).
Rinella, D. J., Wipfli, M. S., Stricker, C. A., Heintz, R. A. & Rinella, M. J. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density. Can. J. Fish. Aquat. Sci. 69, 73–84. https://doi.org/10.1139/f2011-133 (2012).
Google Scholar
Molyneaux, D. B. Fish community survey of the Salmon and Aniak rivers. In Alaska Department of Fish and Game, trip report under permit SF2023-176a (Anchorage, 2024).
MacLean, N. Genetic and Environmental Factors Affecting the Physiology and Ecology of Lake Trout (Lake Trout Synthesis, 1990).
Scannell, P. K. Influence of temperature on freshwater fishes: A literature review with emphasis on species in Alaska (Alaska Department of Fish and, 1992).
Johnson, L. The Arctic charr, Salvelinus alpinus. Dr W Junk Hague 15–98 (1980).
Siikavuopio, S. I., Sæther, B. S., Johnsen, H., Evensen, T. & R, K. Temperature preference of juvenile Arctic Charr originating from different thermal environments. Aquat. Ecol. 48, 313–320. https://doi.org/10.1007/s10452-014-9485-0 (2014).
Google Scholar
McMahon, T. E., Zale, A. V., Barrows, F. T., Selong, J. H. & Danehy, R. J. Temperature and competition between bull trout and brook trout: a test of the elevation refuge hypothesis. Trans. Am. Fish. Soc. 136, 1313–1326. https://doi.org/10.1577/T06-217.1 (2007).
Google Scholar
Thurow, R. F., Peterson, J. T., Chandler, G. L., Moffitt, C. M. & Bjornn, T. C. Concealment of juvenile bull trout in response to temperature, light, and substrate: implications for detection. PloS One. 15, 0237716. https://doi.org/10.1371/journal.pone.0237716 (2020).
Google Scholar
Rombough, P. J. Growth, aerobic metabolism, and dissolved oxygen requirements of embryos and Alevins of steelhead, Salmo gairdneri. Can. J. Zool. 66, 651–660. https://doi.org/10.1139/z88-097 (1988).
Google Scholar
Del Rio, A. M. Differential sensitivity to warming and hypoxia during development and long-term effects of developmental exposure in early life stage Chinook salmon. Conserv. Physiol. 9 https://doi.org/10.1093/conphys/coab054 (2021).
Winberg, G. G. Rate of Metabolism and Food Requirements of Fishes (Byelorussian University, 1956).
Stewart, D. J. & Ibarra, M. Predation and production by salmonine fishes in lake Michigan, 1978–88. Can. J. Fish. Aquat. Sci. 48, 909–922. https://doi.org/10.1139/f91-107 (1991).
Google Scholar
Plumb, J. M. & Moffitt, C. M. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon. Trans. Am. Fish. Soc. 144, 323–330. https://doi.org/10.1080/00028487.2014.986336 (2015).
Google Scholar
Meyer, B. E., Wipfli, M. S., Schoen, E. R., Rinella, D. J. & Falke, J. A. Landscape characteristics influence projected growth rates of stream-resident juvenile salmon in the face of climate change in the Kenai river watershed, south-central Alaska. Trans. Am. Fish. Soc. 152, 169–186. https://doi.org/10.1002/tafs.10397 (2023).
Google Scholar
Shaftel, R., Merrigan, D., Geist, M. & Walker, J. AKTEMP: Presenting a fully functional stream and lake temperature database for Alaska. In Alaska Section American Water Resources Association 2023 Annual Meeting (Anchorage, 2023).
Chipps, S. R. & Wahl, D. H. Bioenergetics modeling in the 21st century. Rev. New. Insights Revisiting Old Constraints Trans. Am. Fish. Soc. 137, 298–313. https://doi.org/10.1577/T05-236.1 (2008).
Google Scholar
Fan, X., Duan, Q., Shen, C., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15, 104056. https://doi.org/10.1088/1748-9326/abb051 (2020).
Google Scholar
Meinshausen, M. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model. Dev. 13, 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020 (2020).
Google Scholar
Anchorage Daily News. Feds recognize Native names of major Alaska river system. (2015).
Thomas, P. A. Arctic Rivers Project Bioenergetics [Data set]. https://github.com/peyton-thomas/ArcticRiversProjectBioenergetics/tree/main.