Notched noise reveals differential improvement in the neural representation of the sound envelope

  • van Hedger, S. C. & Johnsrude, I. S. in Speech Perception – Springer Handbook of Auditory Research Vol. 74 (eds Lori, L. H., et al.) 141 – 172 (Springer Charm, 2022).

  • Hoben, R., Easow, G., Pevzner, S. & Parker, M. A. Outer hair cell and auditory nerve function in speech recognition in quiet and in background noise. Front Neurosci. 11, 157 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fettiplace, R. & Hackney, C. M. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7, 19–29 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Guinan, J. J. Jr. Cochlear efferent innervation and function. Curr. Opin. Otolaryngol. Head. Neck Surg. 18, 447–453 (2010).

    PubMed 

    Google Scholar 

  • Dallos, P. & Harris, D. Properties of auditory nerve responses in absence of outer hair cells. J. Neurophysiol. 41, 365–383 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Ruggero, M. A. Responses to sound of the basilar membrane of the mammalian cochlea. Curr. Opin. Neurobiol. 2, 449–456 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heeringa, A. N. & Köppl, C. Auditory nerve fiber discrimination and representation of naturally-spoken vowels in noise. eNeuro 9 https://doi.org/10.1523/ENEURO.0474-21.2021 (2022).

  • Delgutte, B. & Kiang, N. Y. Speech coding in the auditory nerve: V. Vowels in background noise. J. Acoust. Soc. Am. 75, 908–918 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Geisler, C. D. & Silkes, S. M. Responses of “lower-spontaneous-rate” auditory-nerve fibers to speech syllables presented in noise. II: Glottal-pulse periodicities. J. Acoust. Soc. Am. 90, 3140–3148 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J. & Ekelid, M. Speech recognition with primarily temporal cues. Science 270, 303–304 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Joris, P. X. & Yin, T. C. Responses to amplitude-modulated tones in the auditory nerve of the cat. J. Acoust. Soc. Am. 91, 215–232 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Dreyer, A. & Delgutte, B. Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization. J. Neurophysiol. 96, 2327–2341 (2006).

    PubMed 

    Google Scholar 

  • Heeringa, A. N., Jüchter, C., Beutelmann, R., Klump, G. M. & Köppl, C. Altered neural encoding of vowels in noise does not affect behavioral vowel discrimination in gerbils with age-related hearing loss. Front Neurosci. 17, 1238941 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yates, G. K. Dynamic effects in the input/output relationship of auditory nerve. Hear Res. 27, 221–230 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Smith, R. L. & Brachman, M. L. Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hear Res. 2, 123–133 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Heil, P. & Peterson, A. J. Basic response properties of auditory nerve fibers: a review. Cell Tissue Res. 361, 129–158 (2015).

    PubMed 

    Google Scholar 

  • Carney, L. H. Supra-threshold hearing and fluctuation profiles: Implications for sensorineural and hidden hearing loss. J. Assoc. Res. Otolaryngol. 19, 331–352 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Geisler, C. D. & Sinex, D. G. Responses of primary auditory fibers to combined noise and tonal stimuli. Hear Res. 3, 317–334 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Bruce, I. C., Erfani, Y. & Zilany, M. S. A. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hear Res. 360, 40–54 (2018).

    PubMed 

    Google Scholar 

  • Sumner, C. J., Lopez-Poveda, E. A., O’Mard, L. P. & Meddis, R. A revised model of the inner-hair cell and auditory-nerve complex. J. Acoust. Soc. Am. 111, 2178–2188 (2002).

    PubMed 

    Google Scholar 

  • Klug, J., Schmors, L., Ashida, G. & Dietz, M. Neural rate difference model can account for lateralization of high-frequency stimuli. J. Acoust. Soc. Am. 148, 678 (2020).

    PubMed 

    Google Scholar 

  • Johannesen, P. T., Leclere, T., Wijetillake, A., Segovia-Martinez, M. & Lopez-Poveda, E. A. Modeling temporal information encoding by the population of fibers in the healthy and synaptopathic auditory nerve. Hear Res. 426, 108621 (2022).

    PubMed 

    Google Scholar 

  • Nuetzel, J. M. & Hafter, E. R. Lateralization of complex waveforms: effects of fine structure, amplitude, and duration. J. Acoust. Soc. Am. 60, 1339–1346 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Dietz, M., Bernstein, L. R., Trahiotis, C., Ewert, S. D. & Hohmann, V. The effect of overall level on sensitivity to interaural differences of time and level at high frequencies. J. Acoust. Soc. Am. 134, 494–502 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Siebert, W. M. in Recognizing Patterns (ed Kolers, P. A., Eden, M.) 104–133 (MIT Press, 1968).

  • Dreyer, A. A. & Oxenham, A. J. Effects of level and background noise on interaural time difference discrimination for transposed stimuli. J. Acoust. Soc. Am. 123, EL1–EL7 (2008).

    PubMed 

    Google Scholar 

  • Bernstein, L. R. & Trahiotis, C. Discrimination of interaural temporal disparities conveyed by high-frequency sinusoidally amplitude-modulated tones and high-frequency transposed tones: effects of spectrally flanking noises. J. Acoust. Soc. Am. 124, 3088–3094 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, H. & Dietz, M. Comparison of interaural electrode pairing methods for bilateral cochlear implants. Trends Hear 19 https://doi.org/10.1177/2331216515617143 (2015).

  • Schmiedt, R. A. Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil – comparisons to cat data. Hear. Res. 42, 23–35 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Huet, A. et al. The interplay between spike-time and spike-rate modes in the auditory nerve encodes tone-in-noise threshold. J. Neurosci. 38, 5727–5738 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heeringa, A. N., Teske, F., Ashida, G. & Köppl, C. Cochlear aging disrupts the correlation between spontaneous rate and sound-level coding in auditory nerve fibers. J. Neurophysiol. 130, 736–750 (2023).

    PubMed 

    Google Scholar 

  • Levitt, H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49, 467 (1971).

    Google Scholar 

  • Klug, J. & Dietz, M. Frequency dependence of sensitivity to interaural phase differences in pure tones. J. Acoust. Soc. Am. 152, 3130 (2022).

    PubMed 

    Google Scholar 

  • Temboury-Gutierrez, M. et al. Electrocochleographic frequency-following responses as a potential marker of age-related cochlear neural degeneration. Hear. Res. 446, 109005 (2024).

    PubMed 

    Google Scholar 

  • Delgutte, B. & Kiang, N. Y. Speech coding in the auditory nerve: I. Vowel-like sounds. J. Acoust. Soc. Am. 75, 866–878 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Shera, C. A., Guinan, J. J. Jr. & Oxenham, A. J. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc. Natl. Acad. Sci. USA 99, 3318–3323 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruggero, M. A., Robles, L. & Rich, N. C. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J. Neurophysiol. 68, 1087–1099 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Ruggero, M. A. in The Mammalian Auditory Pathway: Neurophysiology Vol. 2 (eds Popper, A. N. & Fay, R. R.) Ch. 2, 34 – 93 (Springer Charm, 1992).

  • Schmiedt, R. A., Mills, J. H. & Adams, J. C. Tuning and suppression in auditory nerve fibers of aged gerbils raised in quiet or noise. Hear. Res. 45, 221–236 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Patuzzi, R. & Sellick, P. M. The modulation of the sensitivity of the mammalian cochlea by low frequency tones. II. Inner hair cell receptor potentials. Hear. Res. 13, 9–18 (1984).

    Google Scholar 

  • Patuzzi, R., Sellick, P. M. & Johnstone, B. M. The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion. Hear. Res. 13, 19–27 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Guinan, J. J., Jr. in Auditory and Vestibular Efferents (ed Ryugo, D. K., Fay, R. R., Popper, A. N.) (Springer Science + Business Media, LLC, 2011).

  • Schofield, B. R. in Auditory and Vestibular Efferents (ed Fay, D. K., Ryugo, R. R.; Popper, A. N.) (Springer Science + Business Media, LLC., 2011).

  • Glasberg, B. R. & Moore, B. C. Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J. Acoust. Soc. Am. 79, 1020–1033 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Schonweiler, R. & Raap, M. Notched-noise-BERA: methods and diagnostic use. Laryngorhinootologie 86, 336–344 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Lugli, M., Romani, R., Ponzi, S., Bacciu, S. & Parmigiani, S. The windowed sound therapy: a new empirical approach for an effective personalized treatment of tinnitus. Int. Tinnitus J. 15, 51–61 (2009).

    PubMed 

    Google Scholar 

  • Patterson, R. D. Auditory filter shapes derived with noise stimuli. J. Acoust. Soc. Am. 59, 640–654 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Glasberg, B. R. & Moore, B. C. Derivation of auditory filter shapes from notched-noise data. Hear. Res. 47, 103–138 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Glasberg, B. R., Moore, B. C. & Lutfi, R. A. Off-frequency listening and masker uncertainty. J. Acoust. Soc. Am. 72, 273–275 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • Jennings, S. G. & Strickland, E. A. Auditory filter tuning inferred with short sinusoidal and notched-noise maskers. J. Acoust. Soc. Am. 132, 2497–2513 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Verhulst, S., Altoe, A. & Vasilkov, V. Computational modeling of the human auditory periphery: auditory-nerve responses, evoked potentials and hearing loss. Hear. Res. 360, 55–75 (2018).

    PubMed 

    Google Scholar 

  • Schadler, M. R., Warzybok, A., Hochmuth, S. & Kollmeier, B. Matrix sentence intelligibility prediction using an automatic speech recognition system. Int. J. Audio. 54, 100–107 (2015).

    Google Scholar 

  • Beutelmann, R. & Brand, T. Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 120, 331–342 (2006).

    PubMed 

    Google Scholar 

  • Culling, J. F. & Lavandier, M. in Binaural Hearing. Springer Handbook of Auditory Research Vol. 73 (eds Litovsky, R. Y., Goupell, M. J., Fay, R. R. & Popper, A. N.) (Springer, 2021).

  • Hulsmeier, D. & Kollmeier, B. How much individualization is required to predict the individual effect of suprathreshold processing deficits? Assessing Plomp’s distortion component with psychoacoustic detection thresholds and FADE. Hear. Res. 426, 108609 (2022).

    PubMed 

    Google Scholar 

  • Herrmann, S. & Dietz, M. Model-based selection of most informative diagnostic tests and test parameters. Acta Acust 5, 1–12 (2021).

  • Jurgens, T., Clark, N. R., Lecluyse, W. & Meddis, R. Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing. Int. J. Audio. 55, 346–357 (2016).

    Google Scholar 

  • Zilany, M. S. & Bruce, I. C. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J. Acoust. Soc. Am. 120, 1446–1466 (2006).

    PubMed 

    Google Scholar 

  • Greenwood, D. D. Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Am. 33, 1344–1356 (1961).

    Google Scholar 

  • Miller, C. A., Abbas, P. J. & Robinson, B. K. Response properties of the refractory auditory nerve fiber. J. Assoc. Res. Otolaryngol. 2, 216–232 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldberg, J. M. & Brown, P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–636 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • Mardia, K. V. & Jupp, P. E. Directional Statistics (Wiley, New York, 2000).

  • Heeringa, A. N. Single-unit data for sensory neuroscience: Responses from the auditory nerve of young-adult and aging gerbils. Sci. Data 11, 411 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ewert, S. D. in Proceedings of the International Conference on Acoustics. 1326-1329 (AIA-DAGA).

  • Hafter, E. R., Dye, R. H., Jr. & Gilkey, R. H. Lateralization of tonal signals which have neither onsets nor offsets. J. Acoust. Soc. Am. 65, 471-477 (1979).

  • Henning, G. B. Lateralization of low-frequency transients. Hear. Res. 9, 153–172 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Thavam, S. & Dietz, M. Smallest perceivable interaural time differences. J. Acoust. Soc. Am. 145, 458 (2019).

    PubMed 

    Google Scholar 

  • Best, V., Gallun, F. J., Carlile, S. & Shinn-Cunningham, B. G. Binaural interference and auditory grouping. J. Acoust. Soc. Am. 121, 1070–1076 (2007).

    PubMed 

    Google Scholar 

  • Heeringa, A. N. Single-unit auditory nerve fibre responses of young-adult and aging gerbils [Data set]. DRYAD https://doi.org/10.5061/dryad.qv9s4mwn4 (2024).

  • Klug, J. & Dietz, M. Psychoacoustic data for the study “Notched noise reveals differential improvement in the neural representation of sound” [Data set]. Zenodo https://doi.org/10.5281/zenodo.15005127 (2025).

  • Continue Reading