Banai, R. E., Horn, M. W. & Brownson, J. R. S. A review of Tin (II) monosulfide and its potential as a photovoltaic absorber. Sol. Energy Mater. Sol. Cells. 150, 112–129. https://doi.org/10.1016/j.solmat.2015.12.001 (2016).
Google Scholar
Sinsermsuksakul, P., Heo, J., Noh, W., Hock, A. S. & Gordon, R. G. Atomic layer deposition of Tin monosulfide thin films. Adv. Energy Mater. 1, 1116–1125. https://doi.org/10.1002/aenm.201100330 (2011).
Google Scholar
Noguchi, H., Setiyadi, A., Tanamura, H., Nagatomo, T. & Omoto, O. Characterization of vacuum-evaporated Tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells. 35, 325–331. https://doi.org/10.1016/0927-0248(94)90158-9 (1994).
Google Scholar
Kumar Yadav, R., Pawar, P. S., Tae Kim, Y., Sharma, I. & Heo, J. Prebaking of an SnS source with sulfur for achieving higher photovoltaic performance in VTD-SnS thin films for solar cells. J. Mater. Chem. A. 12, 3265–3275. https://doi.org/10.1039/D3TA05204D (2024).
Google Scholar
Sharma, I. et al. Point-junction and alkali-assisted surface selenium diffusion: unveiling a two-step method for enhancing the efficiency of VTD-SnS thin-film solar cells. Chem. Eng. J. 491, 152086. https://doi.org/10.1016/j.cej.2024.152086 (2024).
Google Scholar
Yun, H. S. et al. Efficient nanostructured TiO2/SnS heterojunction solar cells. Adv. Energy Mater. 9, 1901343. https://doi.org/10.1002/aenm.201901343 (2019).
Google Scholar
Suzuki, I., Huang, B., Kawanishi, S., Omata, T. & Klein, A. Avoiding fermi level pinning at the SnS interface for high Open-Circuit voltage. J. Phys. Chem. C. 126, 20570–20576. https://doi.org/10.1021/acs.jpcc.2c04212 (2022).
Google Scholar
Jones, R. O. & Ballone, P. Density functional and Monte Carlo studies of sulfur. I. Structure and bonding in Sn rings and chains (n = 2–18). J. Chem. Phys. 118, 9257–9265. https://doi.org/10.1063/1.1568081 (2003).
Google Scholar
Ran, F. Y., Xiao, Z., Hiramatsu, H., Hosono, H. & Kamiya, T. Growth of high-quality SnS epitaxial films by H2S flow pulsed laser deposition. Appl. Phys. Lett. 104, 072106. https://doi.org/10.1063/1.4866009 (2014).
Google Scholar
Sinsermsuksakul, P. et al. Overcoming efficiency limitations of SnS-Based solar cells. Adv. Energy Mater. 4, 1400496. https://doi.org/10.1002/aenm.201400496 (2014).
Google Scholar
Xiao, Z. et al. Multiple States and roles of hydrogen in p-type SnS semiconductors. Phys. Chem. Chem. Phys. 20, 20952–20956. https://doi.org/10.1039/C8CP02261E (2018).
Google Scholar
Suzuki, I. et al. Omata, n -type electrical conduction in SnS thin films. Phys. Rev. Mater. 5, 125405. https://doi.org/10.1103/PhysRevMaterials.5.125405 (2021).
Google Scholar
Nogami, T. et al. Non-stoichiometry in sns: how it affects thin-film morphology and electrical properties. APL Mater. 13, 031115. https://doi.org/10.1063/5.0248310 (2025).
Google Scholar
McAuliffe, R. D. et al. Synthesis of model sodium sulfide films. J. Vacuum Sci. Technol. A. 39, 053404. https://doi.org/10.1116/6.0001069 (2021).
Google Scholar
Zaporozchenko, V. I. & Stepanova, M. G. Preferential sputtering in binary targets. Prog. Surf. Sci. 49, 155–196. https://doi.org/10.1016/0079-6816(95)00036-X (1995).
Google Scholar
Choi, H. et al. Development of a SnS film process for energy device applications. Appl. Sci. 9, 4606. https://doi.org/10.3390/app9214606 (2019).
Google Scholar
Clayton, A. J., Charbonneau, C. M. E., Tsoi, W. C., Siderfin, P. J. & Irvine, S. J. C. One-step growth of thin film SnS with large grains using MOCVD. Sci. Technol. Adv. Mater. 19, 153–159. https://doi.org/10.1080/14686996.2018.1428478 (2018).
Google Scholar
Tritsaris, G. A., Malone, B. D. & Kaxiras, E. Structural stability and electronic properties of low-index surfaces of SnS. J. Appl. Phys. 115, 173702. https://doi.org/10.1063/1.4874775 (2014).
Google Scholar
Stevanović, V. et al. Variations of ionization potential and electron affinity as a function of surface orientation: the case of orthorhombic SnS. Appl. Phys. Lett. 104, 211603. https://doi.org/10.1063/1.4879558 (2014).
Google Scholar
Ran, F. Y. et al. SnS thin films prepared by H2S-free process and its p -type thin film transistor. AIP Adv. 6, 015112. https://doi.org/10.1063/1.4940931 (2016).
Google Scholar
Wołcyrz, M., Kubiak, R. & Maciejewski, S. X-ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys. Phys. Status Solidi (b). 107, 245–253. https://doi.org/10.1002/pssb.2221070125 (1981).
Google Scholar
Del Bucchia, S., Jumas, J. C. & Maurin, M. Contribution à l’étude de composés sulfurés d’étain(II): affinement de La structure de SnS. Acta Cryst. B. 37, 1903–1905. https://doi.org/10.1107/S0567740881007528 (1981).
Google Scholar
Xia, J. et al. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 8, 2063–2070. https://doi.org/10.1039/C5NR07675G (2016).
Google Scholar
Price, L. S. et al. Atmospheric pressure chemical vapor deposition of Tin sulfides (SnS, Sn2S3, and SnS2) on glass. Chem. Mater. 11, 1792–1799. https://doi.org/10.1021/cm990005z (1999).
Google Scholar
Xu, J., Yang, Y. & Xie, Z. Effect of vacuum annealing on the properties of sputtered SnS thin films. Chalcogenide Lett. 11, 485–491 (2014).
Suzuki, I., Kawanishi, S., Omata, T. & Yanagi, H. Current status of n-type SnS: paving the way for SnS homojunction solar cells. J. Physics: Energy. 4, 042002. http://dx.doi.org/10.1088/2515-7655/ac86a1 (2022).
Google Scholar
Suzuki, I. Carrier control in SnS by doping: A review. J. Ceram. Soc. Jpn. 131, 777–788. https://doi.org/10.2109/jcersj2.23098 (2023).
Google Scholar
Kawanishi, S. et al. Growth of large single crystals of n-Type SnS from Halogen-Added Sn flux. Cryst. Growth. Des. 20, 5931–5939. https://doi.org/10.1021/acs.cgd.0c00617 (2020).
Google Scholar
Takisawa, K. & Sugiyama, M. Tin monosulfide (SnS) epitaxial films grown by RF Magnetron sputtering and sulfurization on MgO(100) substrates. Jpn J. Appl. Phys. 61, 025504. https://doi.org/10.35848/1347-4065/ac3e16 (2022).
Google Scholar
Arepalli, V. K., Shin, Y. & Kim, J. Influence of working pressure on the structural, optical, and electrical properties of RF-sputtered SnS thin films. Superlattices Microstruct. 122, 253–261. https://doi.org/10.1016/j.spmi.2018.08.001 (2018).
Google Scholar
Kawanishi, S. et al. SnS homojunction solar cell with n-Type single crystal and p-Type thin film. Solar RRL. 5, 2000708. https://doi.org/10.1002/solr.202000708 (2021).
Google Scholar
Zhao, L. et al. In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells. RSC Adv. 6, 4108–4115. https://doi.org/10.1039/C5RA24144H (2016).
Google Scholar
Hartman, K. et al. SnS thin-films by RF sputtering at room temperature. Thin Solid Films. 519, 7421–7424. https://doi.org/10.1016/j.tsf.2010.12.186 (2011).
Google Scholar
Weber, A. et al. Multi-stage evaporation of Cu2ZnSnS4 thin films. Thin Solid Films. 517, 2524–2526. https://doi.org/10.1016/j.tsf.2008.11.033 (2009).
Google Scholar
Hartman, K. Annealing for intrinsic point-defect control and enhanced solar cell performance: the case of H2S and tin sulfide (SnS), Thesis, Massachusetts Institute of Technology, (2015). https://dspace.mit.edu/handle/1721.1/98163 (accessed February 7, 2025).
Patel, M., Mukhopadhyay, I. & Ray, A. Annealing influence over structural and optical properties of sprayed SnS thin films. Opt. Mater. 35, 1693–1699. https://doi.org/10.1016/j.optmat.2013.04.034 (2013).
Google Scholar
Anders, A. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films. 518, 4087–4090. https://doi.org/10.1016/j.tsf.2009.10.145 (2010).
Google Scholar
Kosaraju, S., Repins, I. & Wolden, C. A. Development of Plasma-Assisted processing for selenization and sulfurization of absorber layers. MRS Proc. 763 (B8.19). https://doi.org/10.1557/PROC-763-B8.19 (2003).
Mochalov, L. et al. Behavior of Carbon-Containing impurities in the process of Plasma-Chemical distillation of sulfur. Plasma Chem. Plasma Process. 38, 587–598. https://doi.org/10.1007/s11090-018-9879-1 (2018).
Google Scholar
Nikzad, S. A study of ion beam sputtering of compound materials with laser spectroscopy, phd. Calif. Inst. Technol. https://doi.org/10.7907/kgvz-n067 (1990).
Google Scholar
Chase, M. W. & Thermochemical Tables, N. I. S. T. J. A. N. A. F. (1998). https://doi.org/10.18434/T42S31
Barin, I. Thermochemical Data of Pure Substance (VCH, 1995).