Laporte, N. et al. ALMA Lensing Cluster Survey: a strongly lensed multiply imaged dusty system at z ≥ 6. Mon. Not. R. Astron. Soc. 505, 4838–4846 (2021).
Google Scholar
Fujimoto, S. et al. ALMA Lensing Cluster Survey: bright [C II] 158 μm lines from a multiply imaged sub-L⋆ galaxy at z = 6.0719. Astrophys. J. 911, 99 (2021).
Google Scholar
Giménez-Arteaga, C. et al. Outshining in the spatially resolved analysis of a strongly-lensed galaxy at z = 6.072 with JWST NIRCam. Astron. Astrophys. 686, A63 (2024).
Shibuya, T., Ouchi, M. & Harikane, Y. Morphologies of ~190,000 galaxies at z = 0–10 revealed with HST legacy data. I. Size evolution. Astrophys. J. Suppl. Ser. 219, 15 (2015).
Google Scholar
Iyer, K. et al. The SFR-M* correlation extends to low mass at high redshift. Astrophys. J. 866, 120 (2018).
Google Scholar
Nakajima, K. et al. JWST census for the mass–metallicity star formation relations at z = 4–10 with self-consistent flux calibration and proper metallicity calibrators. Astrophys. J. Suppl. Ser. 269, 33 (2023).
Google Scholar
Behroozi, P. & Silk, J. The most massive galaxies and black holes allowed by ΛCDM. Mon. Not. R. Astron. Soc. 477, 5382–5387 (2018).
Google Scholar
Livermore, R. C. et al. Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ~100 pc scales at 1<z <4. Mon. Not. R. Astron. Soc. 450, 1812–1835 (2015).
Google Scholar
Vanzella, E. et al. JWST/NIRCam probes young star clusters in the Reionization Era Sunrise Arc. Astrophys. J. 945, 53 (2023).
Google Scholar
Adamo, A. et al. Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang. Nature 632, 513–516 (2024).
Zanella, A. et al. The [C II] emission as a molecular gas mass tracer in galaxies at low and high redshifts. Mon. Not. R. Astron. Soc. 481, 1976–1999 (2018).
Google Scholar
Cacciato, M., Dekel, A. & Genel, S. Evolution of violent gravitational disc instability in galaxies: late stabilization by transition from gas to stellar dominance. Mon. Not. R. Astron. Soc. 421, 818–831 (2012).
Google Scholar
Genzel, R. et al. The Sins Survey of z ~ 2 galaxy kinematics: properties of the giant star-forming clumps. Astrophys. J. 733, 101 (2011).
Google Scholar
Mager, V. A. et al. Galaxy structure in the ultraviolet: the dependence of morphological parameters on rest-frame wavelength. Astrophys. J. 864, 123 (2018).
Google Scholar
Livermore, R. C. et al. Hubble Space Telescope Hα imaging of star-forming galaxies at z≃1–1.5: evolution in the size and luminosity of giant H II regions. Mon. Not. R. Astron. Soc. 427, 688–702 (2012).
Google Scholar
Wetzel, A. et al. Public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation. Astrophys. J. Suppl. Ser. 265, 44 (2023).
Google Scholar
Pallottini, A. et al. A survey of high-z galaxies: SERRA simulations. Mon. Not. R. Astron. Soc. 513, 5621–5641 (2022).
Google Scholar
Ma, X. et al. Self-consistent proto-globular cluster formation in cosmological simulations of high-redshift galaxies. Mon. Not. R. Astron. Soc. 493, 4315–4332 (2020).
Google Scholar
Finkelstein, S. L. et al. A long time ago in a galaxy far, far away: a candidate z ~ 12 galaxy in early JWST CEERS imaging. Astrophys. J. Lett. 940, L55 (2022).
Google Scholar
Harikane, Y. et al. A comprehensive study of galaxies at z 9–16 found in the early JWST data: ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch. Astrophys. J. Suppl. Ser. 265, 5 (2023).
Google Scholar
Grudić, M. Y. et al. STARFORGE: towards a comprehensive numerical model of star cluster formation and feedback. Mon. Not. R. Astron. Soc. 506, 2199–2231 (2021).
Google Scholar
Fukushima, H. & Yajima, H. Radiation hydrodynamics simulations of massive star cluster formation in giant molecular clouds. Mon. Not. R. Astron. Soc. 506, 5512–5539 (2021).
Google Scholar
El-Zant, A., Shlosman, I. & Hoffman, Y. Dark halos: the flattening of the density cusp by dynamical friction. Astrophys. J. 560, 636–643 (2001).
Google Scholar
Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).
Coe, D. et al. RELICS: Reionization Lensing Cluster Survey. Astrophys. J. 884, 85 (2019).
Google Scholar
Postman, M. et al. The cluster lensing and supernova survey with Hubble: an overview. Astrophys. J. Suppl. Ser. 199, 25 (2012).
Google Scholar
Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).
Google Scholar
Oguri, M. The mass distribution of SDSS J1004+4112 revisited. Publ. Astron. Soc. Jpn 62, 1017 (2010).
Google Scholar
Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007).
Google Scholar
Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).
Google Scholar
Fujimoto, S. et al. ALMA Lensing Cluster Survey: deep 1.2 mm number counts and infrared luminosity functions at z≃1–8. Astrophys. J. Suppl. Ser. 275, 36 (2024).
Valentino, F. et al. An atlas of color-selected quiescent galaxies at z > 3 in public JWST fields. Astrophys. J. 947, 20 (2023).
Google Scholar
Brammer, G. “grizli”. Zenodo https://doi.org/10.5281/zenodo.1146904 (2023).
Rigby, J. R. et al. JWST Early Release Science Program TEMPLATES: targeting extremely magnified panchromatic lensed arcs and their extended star formation. Astrophys. J. 978, 108 (2024).
Welch, B., Rigby, J. R. & Hutchison, T. A. TEMPLATES: Tests of NIRSpec Observing Strategy, using SGAS1723. Res. Notes Am. Astron. Soc. 7, 17 (2023).
Google Scholar
Rauscher, B. J. NSClean: an algorithm for removing correlated noise from JWST NIRSpec images. Publ. Astron. Soc. Pac. 136, 015001 (2024).
Google Scholar
Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment of a dual AGN at z ~ 3.3 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 679, A89 (2023).
Vanzella, E. et al. An extremely metal-poor star complex in the reionization era: approaching Population III stars with JWST. Astron. Astrophys. 678, A173 (2023).
Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).
Google Scholar
D’Eugenio, F. et al. A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z = 3. Nat. Astron. 8, 1443–1456 (2024).
Isobe, Y. et al. Redshift evolution of electron density in the interstellar medium at z 0–9 uncovered with JWST/NIRSpec spectra and line-spread function determinations. Astrophys. J. 956, 139 (2023).
Google Scholar
Furtak, L. J. et al. A complex node of the cosmic web associated with the massive galaxy cluster MACS J0600.1-2008. Mon. Not. R. Astron. Soc. 533, 2242–2261 (2024).
Furtak, L. J. et al. UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging. Mon. Not. R. Astron. Soc. 523, 4568–4582 (2023).
Google Scholar
Papovich, C., Dickinson, M. & Ferguson, H. C. The stellar populations and evolution of lyman break galaxies. Astrophys. J. 559, 620–653 (2001).
Google Scholar
Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).
Google Scholar
Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mexicana Astron. Astrofis. 53, 385–438 (2017).
Google Scholar
Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).
Google Scholar
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Google Scholar
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
Google Scholar
Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).
Google Scholar
Izotov, Y. I. et al. The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey. Astron. Astrophys. 448, 955–970 (2006).
Google Scholar
Pilyugin, L. S. & Thuan, T. X. Oxygen abundance determination in H II regions: the strong line intensities-abundance calibration revisited. Astrophys. J. 631, 231–243 (2005).
Google Scholar
Campbell, A., Terlevich, R. & Melnick, J. The stellar populations and evolution of H II galaxies—I. High signal-to-noise optical spectroscopy. Mon. Not. R. Astron. Soc. 223, 811–825 (1986).
Google Scholar
Curti, M., Mannucci, F., Cresci, G. & Maiolino, R. The mass-metallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies. Mon. Not. R. Astron. Soc. 491, 944–964 (2020).
Google Scholar
Marques-Chaves, R. et al. Extreme N-emitters at high redshift: possible signatures of supermassive stars and globular cluster or black hole formation in action. Astron. Astrophys. 681, A30 (2024).
Topping, M. W. et al. Metal-poor star formation at z > 6 with JWST: new insight into hard radiation fields and nitrogen enrichment on 20 pc scales. Mon. Not. R. Astron. Soc. 529, 3301–3322 (2024).
Google Scholar
Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).
Google Scholar
Sanders, R. L. et al. Excitation and ionization properties of star-forming galaxies at z = 2.0–9.3 with JWST/NIRSpec. Astrophys. J. 955, 54 (2023).
Google Scholar
Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity AGN at z ~ 5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 677, A145 (2023).
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. 117, 393–404 (1996).
Google Scholar
Kalita, B. S. et al. Near-IR clumps and their properties in high-z galaxies with JWST/NIRCam. Mon. Not. R. Astron. Soc. 537, 402–418 (2025).
Mowla, L. et al. Formation of a low-mass galaxy from star clusters in a 600-million-year-old Universe. Nature 636, 332–336 (2024).
King, I. R. The structure of star clusters. III. Some simple dynamical models. Astron. J. 71, 64 (1966).
Google Scholar
Morishita, T. & Stiavelli, M. Physical characterization of early galaxies in the Webb’s first deep field SMACS J0723.3-7323. Astrophys. J. Lett. 946, L35 (2023).
Google Scholar
Di Teodoro, E. M. & Fraternali, F. 3DBAROLO: a new 3D algorithm to derive rotation curves of galaxies. Mon. Not. R. Astron. Soc. 451, 3021–3033 (2015).
Google Scholar
Rizzo, F. et al. Dynamical characterization of galaxies up to z ~ 7. Astron. Astrophys. 667, A5 (2022).
Nakazato, Y., Ceverino, D. & Yoshida, N. A merger-driven scenario for clumpy galaxy formation in the epoch of reionization: physical properties of clumps in the FirstLight simulation. Astrophys. J. 975, 238 (2024).
Kohandel, M. et al. Dynamically cold disks in the early Universe: myth or reality? Astron. Astrophys. 685, A72 (2024).
Bacchini, C. et al. A 3D view on the local gravitational instability of cold gas discs in star-forming galaxies at 0 ≲ z ≲ 5. Astron. Astrophys. 687, A115 (2024).
Sommovigo, L. et al. Dust temperature in ALMA [C II]-detected high-z galaxies. Mon. Not. R. Astron. Soc. 503, 4878–4891 (2021).
Google Scholar
Vizgan, D. et al. Tracing molecular gas mass in z≃6 galaxies with [C II]. Astrophys. J. 929, 92 (2022).
Google Scholar
Valentino, F. et al. The cold interstellar medium of a normal sub-L⋆ galaxy at the end of reionization. Astron. Astrophys. 685, A138 (2024).
Rémy-Ruyer, A. et al. Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range. Astron. Astrophys. 563, A31 (2014).
Conselice, C. J. The relationship between stellar light distributions of galaxies and their formation histories. Astrophys. J. Suppl. Ser. 147, 1 (2003).
Google Scholar
Elmegreen, B. G., Zhang, H.-X. & Hunter, D. A. In-spiraling clumps in blue compact dwarf galaxies. Astrophys. J. 747, 105 (2012).
Google Scholar
Rowland, L. E. et al. Pre-supernova stellar feedback in nearby starburst dwarf galaxies. Astron. Astrophys. 685, A46 (2024).
Iorio, G. et al. LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies. Mon. Not. R. Astron. Soc. 466, 4159–4192 (2017).
Google Scholar
Murphy, E. J. et al. Calibrating extinction-free star formation rate diagnostics with 33 GHz free-free emission in NGC 6946. Astrophys. J. 737, 67 (2011).
Google Scholar
Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).
Google Scholar
Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).
Google Scholar
Rosdahl, J. et al. RAMSES-RT: radiation hydrodynamics in the cosmological context. Mon. Not. R. Astron. Soc. 436, 2188–2231 (2013).
Google Scholar
Aubert, D. & Teyssier, R. A radiative transfer scheme for cosmological reionization based on a local Eddington tensor. Mon. Not. R. Astron. Soc. 387, 295–307 (2008).
Google Scholar
Pallottini, A. et al. Deep into the structure of the first galaxies: SERRA views. Mon. Not. R. Astron. Soc. 487, 1689–1708 (2019).
Google Scholar
Vallini, L., Ferrara, A., Pallottini, A. & Gallerani, S. Molecular cloud photoevaporation and far-infrared line emission. Mon. Not. R. Astron. Soc. 467, 1300–1312 (2017).
Google Scholar
Behrens, C. et al. Dusty galaxies in the Epoch of Reionization: simulations. Mon. Not. R. Astron. Soc. 477, 552–565 (2018).
Google Scholar
Feldmann, R. et al. Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon. Mon. Not. R. Astron. Soc. 470, 1050–1072 (2017).
Google Scholar
Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).
Ma, X. et al. Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions. Mon. Not. R. Astron. Soc. 478, 1694–1715 (2018).
Google Scholar
Pallottini, A. & Ferrara, A. Stochastic star formation in early galaxies: Implications for the James Webb Space Telescope. Astron. Astrophys. 677, L4 (2023).
Google Scholar
Sun, G. et al. Bursty star formation naturally explains the abundance of bright galaxies at cosmic dawn. Astrophys. J. Lett. 955, L35 (2023).
Google Scholar
Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).
Google Scholar
Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).
Google Scholar
Dekel, A. et al. Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts. Mon. Not. R. Astron. Soc. 523, 3201–3218 (2023).
Google Scholar
Ferrara, A., Pallottini, A. & Dayal, P. On the stunning abundance of super-early, luminous galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 522, 3986–3991 (2023).
Google Scholar
Dekel, A., Sari, R. & Ceverino, D. Formation of massive galaxies at high redshift: cold streams, clumpy disks, and compact spheroids. Astrophys. J. 703, 785–801 (2009).
Google Scholar
Ono, Y. et al. Morphologies of galaxies at z ≳ 9 uncovered by JWST/NIRCam imaging: cosmic size evolution and an identification of an extremely compact bright galaxy at z ∼ 12. Astrophys. J. 951, 72 (2023).
Google Scholar
Sandles, L. et al. JADES: Balmer decrement measurements at redshifts 4 < z < 7. Astron. Astrophys. 691, A305 (2024).
Shapley, A. E. et al. The MOSFIRE deep evolution field survey: implications of the lack of evolution in the dust attenuation-mass relation to z ~ 2. Astrophys. J. 926, 145 (2022).
Google Scholar
Pilyugin, L. S., Vílchez, J. M., Mattsson, L. & Thuan, T. X. Abundance determination from global emission-line SDSS spectra: exploring objects with high N/O ratios. Mon. Not. R. Astron. Soc. 421, 1624–1634 (2012).
Google Scholar
Reddy, N. A. et al. Paschen-line constraints on dust attenuation and star formation at z ~ 1–3 with JWST/NIRSpec. Astrophys. J. 948, 83 (2023).
Google Scholar