Tack, D. M. et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—foodborne diseases active surveillance network, 10 U.S. Sites, 2016–2019. Morb. Mortal. Wkly. Rep. 69, 509–514 (2020).
Fan, Z., Xie, J., Li, Y. & Wang, H. Listeriosis in mainland China: a systematic review. Int. J. Infect. Dis. 81, 17–24 (2019).
Google Scholar
EFSA & ECDC. The European Union One Health 2023 Zoonoses Report. EFSA J. 22, 62-73 (2024).
Charlier, C. et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect. Dis. 17, 510–519 (2017).
Google Scholar
Pinner, R. W. Role of foods in sporadic listeriosis. JAMA 267, 2046 (1992).
Google Scholar
Ricci, A. et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 16, e05134 (2018).
FAO & WHO. Risk Assessment of Listeria Monocytogenes in Ready-to-Eat Foods. http://www.fao.org/es/esn (2004).
ECDC & EFSA. Prolonged Multi-Country Cluster of Listeria Monocytogenes ST155 Infections Linked to Ready-to-Eat Fish Products. https://efsa.onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2023.EN-8538 (2023).
Lundén, J., Tolvanen, R. & Korkeala, H. Acid and heat tolerance of persistent and nonpersistent Listeria monocytogenes food plant strains. Lett. Appl. Microbiol. 46, 276–280 (2007).
Google Scholar
Liu, M. et al. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit. Rev. Food Sci. Nutr. 1–15 https://doi.org/10.1080/10408398.2024.2322141 (2024).
Bae, D. et al. Global gene expression of Listeria monocytogenes to salt stress. J. Food Prot. 75, 906–912 (2012).
Google Scholar
Vogel, B. F., Hansen, L. T., Mordhorst, H. & Gram, L. The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material. Int. J. Food Microbiol. 140, 192–200 (2010).
Google Scholar
Møretrø, T. et al. Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int. J. Food Microbiol. 241, 215–224 (2017).
Google Scholar
Puga, C. H., Dahdouh, E., SanJose, C. & Orgaz, B. Listeria monocytogenes colonizes Pseudomonas fluorescens biofilms and induces matrix over-production. Front. Microbiol. 9, 1706 (2018).
Flemming, H. C. et al. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
Google Scholar
Abebe, G. M. The role of bacterial biofilm in antibiotic resistance and food contamination. Int. J. Microbiol. 2020, 1–10 (2020).
Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A. & Raposo, A. Microbial biofilms in the food industry—a comprehensive review. Int. J. Environ. Res. Public Health 18, 2014 (2021).
Google Scholar
Bolocan, A. S. et al. Putative cross-contamination routes of Listeria monocytogenes in a meat processing facility in Romania. J. Food Prot. 78, 1664–1674 (2015).
Google Scholar
Carpentier, B. & Cerf, O. Review-persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 145, 1–8 (2011).
Google Scholar
Aarnisalo, K., Sheen, S., Raaska, L. & Tamplin, M. Modelling transfer of Listeria monocytogenes during slicing of ‘gravad’ salmon. Int. J. Food Microbiol. 118, 69–78 (2007).
Google Scholar
Lin, C.-M. et al. Cross-contamination between processing equipment and deli meats by Listeria monocytogenes. J. Food Prot. 69, 71–79 (2006).
Google Scholar
Vorst, K. L., Todd, E. C. D. & Ryser, E. T. Transfer of Listeria monocytogenes during mechanical slicing of turkey breast, bologna, and salami. J. Food Prot. 69, 619–626 (2006).
Google Scholar
Pang, X. & Yuk, H. G. Effects of the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens on survival of biofilm cells under food-related stresses and transfer to salmon. Food Microbiol. 82, 142–150 (2019).
Google Scholar
Truelstrup Hansen, L. & Vogel, B. F. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: survival and transfer to salmon products. Int. J. Food Microbiol. 146, 88–93 (2011).
Wang, Z. et al. Characterization of Listeria monocytogenes biofilm formation kinetics and biofilm transfer to cantaloupe surfaces. Food Res. Int. 161, 111839 (2022).
Scollon, A. M., Wang, H. & Ryser, E. T. Transfer of Listeria monocytogenes during mechanical slicing of onions. Food Control 65, 160–167 (2016).
Possas, A. M. M., Posada-Izquierdo, G. D., Pérez-Rodríguez, F. & García-Gimeno, R. M. Modeling the transfer of Salmonella Enteritidis during slicing of ready-to-eat turkey products treated with thyme essential oil. J. Food Sci. 81, M2770–M2775 (2016).
Google Scholar
Xiao, X. et al. Modeling transfer of Vibrio Parahaemolyticus during peeling of raw shrimp. J. Food Sci. 83, 756–762 (2018).
Google Scholar
Rodríguez-López, P., Saá-Ibusquiza, P., Mosquera-Fernández, M. & López-Cabo, M. Listeria monocytogenes-carrying consortia in food industry. Composition, subtyping and numerical characterisation of mono-species biofilm dynamics on stainless steel. Int. J. Food Microbiol. 206, 84–95 (2015).
Google Scholar
Kim, U. & Oh, S. W. Characterizing the formation and cross-contamination potential of multi-species biofilms in poultry processing environments: S. Enteritidis, C. jejuni and C. perfringens. Food Control 163, 110481 (2024).
Rodríguez-López, P., Rodríguez-Herrera, J. J. & López Cabo, M. Architectural features and resistance to food-grade disinfectants in Listeria monocytogenes–Pseudomonas spp. Dual-species biofilms. Front. Microbiol. 13, 917964 (2022).
Heir, E., Møretrø, T., Simensen, A. & Langsrud, S. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments. Int. J. Food Microbiol. 275, 46–55 (2018).
Google Scholar
Fagerlund, A., Langsrud, S. & Møretrø, T. Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Curr. Opin. Food Sci. 37, 171–178 (2021).
Langsrud, S., Moen, B., Møretrø, T., Løype, M. & Heir, E. Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants. J. Appl. Microbiol. 120, 366–378 (2016).
Google Scholar
Rodríguez-López, P., Bernárdez, M., Rodríguez-Herrera, J. J., Comesaña, ÁS. & Cabo, M. L. Identification and metagenetic characterisation of Listeria monocytogenes-harbouring communities present in food-related industrial environments. Food Control 95, 6–17 (2019).
Saá Ibusquiza, P., Herrera, J. J. R., Vázquez-Sánchez, D. & Cabo, M. L. Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida. Food Control 25, 202–210 (2012).
Lake, F. B., van Overbeek, L. S., Baars, J. J. P., Abee, T. & den Besten, H. M. W. Growth performance of Listeria monocytogenes and background microbiota from mushroom processing environments. Int. J. Food Microbiol. 395, 110183 (2023).
Koutsoumanis, K. A study on the variability in the growth limits of individual cells and its effect on the behavior of microbial populations. Int. J. Food Microbiol. 128, 116–121 (2008).
Google Scholar
Koyama, K., Hiura, S., Abe, H. & Koseki, S. Application of growth rate from kinetic model to calculate stochastic growth of a bacteria population at low contamination level. J. Theor. Biol. 525, 110758 (2021).
Koutsoumanis, K. P. & Sofos, J. N. Effect of inoculum size on the combined temperature, pH and a w limits for growth of Listeria monocytogenes. Int. J. Food Microbiol. 104, 83–91 (2005).
Google Scholar
Koutsoumanis, K. P., Kendall, P. A. & Sofos, J. N. A comparative study on growth limits of Listeria monocytogenes as affected by temperature, pH and aw when grown in suspension or on a solid surface. Food Microbiol. 21, 415–422 (2004).
Smith, N. W., Shorten, P. R., Altermann, E., Roy, N. C. & McNabb, W. C. The classification and evolution of bacterial cross-feeding. Front. Ecol. Evol. 7, 153 (2019).
Ch’ng, J.-H. et al. Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. ISME J. 16, 2015–2026 (2022).
Google Scholar
Gusnaniar, N. et al. Physico-chemistry of bacterial transmission versus adhesion. Adv. Colloid Interface Sci. 250, 15–24 (2017).
Google Scholar
Gusnaniar et al. Transmission of monospecies and dualspecies biofilms from smooth to nanopillared surfaces. Appl. Environ. Microbiol. 84, 1–11 (2018).
Colagiorgi, A., Di Ciccio, P., Zanardi, E., Ghidini, S. & Ianieri, A. A look inside the Listeria monocytogenes biofilms extracellular matrix. Microorganisms 4, 22 (2016).
Andrews, J. S., Rolfe, S. A., Huang, W. E., Scholes, J. D. & Banwart, S. A. Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species. Environ. Microbiol. 12, 2496–2507 (2010).
Google Scholar
Jia, J., Xue, X., Guan, Y., Fan, X. & Wang, Z. Biofilm characteristics and transcriptomic profiling of Acinetobacter johnsonii defines signatures for planktonic and biofilm cells. Environ. Res. 213, 113714 (2022).
Google Scholar
Maillet, A. et al. Characterization of bacterial communities of cold-smoked salmon during storage. Foods 10, 362 (2021).
Google Scholar
Golmoradi Zadeh, R., Asgharzadeh, S., Darbandi, A., Aliramezani, A. & Masjedian Jazi, F. Characterization of bacteriocins produced by Lactobacillus species against adhesion and invasion of Listeria monocytogenes isolated from different samples. Microb. Pathog. 162, 105307 (2022).
Google Scholar
Duffes, F., Corre, C., Leroi, F., Dousset, X. & Boyaval, P. Inhibition of Listeria monocytogenes by in situ produced and semipurified bacteriocins of carnobacterium spp. on Vacuum-packed, refrigerated cold-smoked salmon. J. Food Prot. 62, 1394–1403 (1999).
Google Scholar
Rodríguez-López, P., Rodríguez-Herrera, J. J. & Cabo, M. L. Tracking bacteriome variation over time in Listeria monocytogenes-positive foci in food industry. Int. J. Food Microbiol. 315, 108439 (2020).
Google Scholar
R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (2024).
Posit team. RStudio: Integrated Development Environment for R. http://www.posit.co/ (2024).
Wickham, H. Ggplot2. (Springer International Publishing, Cham, 2016). https://doi.org/10.1007/978-3-319-24277-4.
Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R Package for Fitting Distributions. J. Stat Softw. 64, 1–34 (2015).
Beran, R. Prepivoting test statistics: a bootstrap view of asymptotic refinements. J. Am. Stat. Assoc. 83, 687–697 (1988).