Epicardial adipose tissue volume is associated with impaired left ventricular strain in patients with metabolic syndrome: the mediating role of myocardial energetic efficiency | Cardiovascular Diabetology

  • Neeland IJ, Lim S, Tchernof A, Gastaldelli A, Rangaswami J, Ndumele CE, Powell-Wiley TM. Despr├ęs JP: metabolic syndrome. Nat Rev Dis Primers. 2024;10(1):77.

    PubMed 

    Google Scholar 

  • Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593–606.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Villasante Fricke AC, Iacobellis G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20235989.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC, Voon WC, Sheu SH, Lai WT. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes. 2005;32(2):268–74.

    Google Scholar 

  • Maimaituxun G, Kusunose K, Yamada H, Fukuda D, Yagi S, Torii Y, Yamada N, Soeki T, Masuzaki H, Sata M, et al. Deleterious effects of epicardial adipose tissue volume on global longitudinal strain in patients with preserved left ventricular ejection fraction. Front Cardiovasc Med. 2020;7: 607825.

    PubMed 

    Google Scholar 

  • Xu J, Yang W, Zhao S, Lu M. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives. Eur Radiol. 2022;32(8):5424–35.

    PubMed 

    Google Scholar 

  • Ersboll M, Valeur N, Mogensen UM, Andersen MJ, Moller JE, Velazquez EJ, Hassager C, Sogaard P, Kober L. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013;61(23):2365–73.

    PubMed 

    Google Scholar 

  • de Simone G, Chinali M, Galderisi M, Benincasa M, Girfoglio D, Botta I, D’Addeo G, de Divitiis O. Myocardial mechano-energetic efficiency in hypertensive adults. J Hypertens. 2009;27(3):650–5.

    PubMed 

    Google Scholar 

  • Mancusi C, Midtbø H, De Luca N, Halland H, de Simone G, Gerdts E. Association of myocardial energetic efficiency with circumferential and longitudinal left ventricular myocardial function in subjects with increased body mass index (the FATCOR study). J Clin Med. 2021. https://doi.org/10.3390/jcm10081581.

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Simone G, Izzo R, Losi MA, Stabile E, Rozza F, Canciello G, Mancusi C, Trimarco V, De Luca N, Trimarco B. Depressed myocardial energetic efficiency is associated with increased cardiovascular risk in hypertensive left ventricular hypertrophy. J Hypertens. 2016;34(9):1846–53.

    PubMed 

    Google Scholar 

  • Vanessa Fiorentino T, Miceli S, Succurro E, Sciacqua A, Andreozzi F, Sesti G. Depressed myocardial mechano-energetic efficiency in subjects with dysglycemia. Diabetes Res Clin Pract. 2021;177: 108883.

    PubMed 

    Google Scholar 

  • Mancusi C, Midtb ŞH, De Luca N, Halland H, de Simone G, Gerdts E. Association of myocardial energetic efficiency with circumferential and longitudinal left ventricular myocardial function in subjects with increased body mass index (the FATCOR Study). J Clin Med. 2021;10(8):1581.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr.: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.

  • Cheong KC, Ghazali SM, Hock LK, Subenthiran S, Huey TC, Kuay LK, Mustapha FI, Yusoff AF, Mustafa AN. The discriminative ability of waist circumference, body mass index and waist-to-hip ratio in identifying metabolic syndrome: variations by age, sex and race. Diabetes Metab Syndr. 2015;9(2):74–8.

    PubMed 

    Google Scholar 

  • Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, Ramirez A, Schlaich M, Stergiou GS, Tomaszewski M, et al. 2020 International society of hypertension global hypertension practice guidelines. Hypertension. 2020;75(6):1334–57.

    PubMed 

    Google Scholar 

  • Chamberlain JJ, Rhinehart AS, Shaefer CF Jr, Neuman A. Diagnosis and management of diabetes: synopsis of the 2016 American Diabetes Association standards of medical care in diabetes. Ann Intern Med. 2016;164(8):542–52.

    PubMed 

    Google Scholar 

  • Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2020;22(1):17.

    Google Scholar 

  • Liu B, Dardeer AM, Moody WE, Hayer MK, Baig S, Price AM, Leyva F, Edwards NC, Steeds RP. Reference ranges for three-dimensional feature tracking cardiac magnetic resonance: comparison with two-dimensional methodology and relevance of age and gender. Int J Cardiovasc Imaging. 2018;34(5):761–75.

    PubMed 

    Google Scholar 

  • Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen H, Brunner FJ, Ozden C, Wenzel UO, Neumann JT, Erley J, Saering D, Muellerleile K, Maas KJ, Schoennagel BP, et al. Left ventricular myocardial strain responding to chronic pressure overload in patients with resistant hypertension evaluated by feature-tracking CMR. Eur Radiol. 2023;33(9):6278–89.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, Kato T, Khan R, Takayama H, Knöll R, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012;125(23):2844–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC, Cowart LA. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 2018;32(3):1403–16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramezankhani A, Tohidi M, Hadaegh F. Association between the systemic immune-inflammation index and metabolic syndrome and its components: results from the multi-ethnic study of atherosclerosis (MESA). Cardiovasc Diabetol. 2025;24(1):78.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, Amour J, Leprince P, Dutour A, Clément K, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 2015;36(13):795–805a.

    PubMed 

    Google Scholar 

  • Pizzo E, Cervantes DO, Ripa V, Filardo A, Berrettoni S, Ketkar H, Jagana V, Di Stefano V, Singh K, Ezzati A, et al. The cAMP/PKA signaling pathway conditions cardiac performance in experimental animals with metabolic syndrome. J Mol Cell Cardiol. 2024;196:35–51.

    PubMed 

    Google Scholar 

  • Wu CK, Lee JK, Hsu JC, Su MM, Wu YF, Lin TT, Lan CW, Hwang JJ, Lin LY. Myocardial adipose deposition and the development of heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22(3):445–54.

    PubMed 

    Google Scholar 

  • Timóteo AT, Barbas Albuquerque F, Lacerda Teixeira B. Pericardium, epicardial adipose tissue, and heart failure with preserved ejection fraction: pathophysiology, quantification and treatment target. Int J Cardiol. 2024;412: 132303.

    PubMed 

    Google Scholar 

  • Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, Thomas S, Herdman L, Kotanidis CP, Thomas KE, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet (London, England). 2018;392(10151):929–39.

    PubMed 

    Google Scholar 

  • Ishikawa H, Sugiyama T, Otsuka K, Yamaura H, Hojo K, Kono Y, Ito A, Yamazaki T, Shimada K, Kasayuki N, et al. Impact of epicardial adipose tissue on diastolic dysfunction in patients with chronic coronary syndrome and preserved left ventricular ejection fraction. Eur Heart J Imaging Methods Pract. 2024;2(1): qyae056.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho DH, Joo HJ, Kim MN, Lim DS, Shim WJ, Park SM. Association between epicardial adipose tissue, high-sensitivity C-reactive protein and myocardial dysfunction in middle-aged men with suspected metabolic syndrome. Cardiovasc Diabetol. 2018;17(1):95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasquez M, Nagel E. Clinical indications for cardiovascular magnetic resonance. Heart. 2019;105(22):1755–62.

    PubMed 

    Google Scholar 

  • Zhu J, Xie Z, Huang H, Li W, Zhuo K, Bai Z, Huang R. Association of epicardial adipose tissue with left ventricular strain and MR myocardial perfusion in patients with known coronary artery disease. J Magn Reson Imaging JMRI. 2023;58(5):1490–8.

    PubMed 

    Google Scholar 

  • Devesa A, Fuster V, García-Lunar I, Oliva B, García-Alvarez A, Moreno-Arciniegas A, Vazirani R, Pérez-Herreras C, Marina P, Bueno H, et al. Coronary microvascular function in asymptomatic middle-aged individuals with cardiometabolic risk factors. JACC Cardiovasc Imaging. 2025;18(1):48–58.

    PubMed 

    Google Scholar 

  • Serrano-Ferrer J, Crendal E, Walther G, Vinet A, Dutheil F, Naughton G, Lesourd B, Chapier R, Courteix D, Obert P. Effects of lifestyle intervention on left ventricular regional myocardial function in metabolic syndrome patients from the RESOLVE randomized trial. Metabolism. 2016;65(9):1350–60.

    PubMed 

    Google Scholar 

  • Göpel SO, Adingupu D, Wang J, Semenova E, Behrendt M, Jansson-Löfmark R, Ahlström C, Jönsson-Rylander AC, Gopaul VS, Esterline R, et al. SGLT2 inhibition improves coronary flow velocity reserve and contractility: role of glucagon signaling. Cardiovasc Diabetol. 2024;23(1):408.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dural İE, Sarı A, Ersoy İ. Effects of 3 months of treatment with empagliflozin on left ventricle global longitudinal strain and myocardial mechano-energetic effiency. Echocardiography. 2022;39(8):1095–100.

    PubMed 

    Google Scholar 

  • Juszczyk A, Jankowska K, Zawi┼Ťlak B, Surdacki A, Chyrchel B: Depressed cardiac mechanical energetic efficiency: a contributor to cardiovascular risk in common metabolic diseases-from mechanisms to clinical applications. J Clin Med 2020;9(9).

  • Min CY, Gao Y, Li Y, Jiang YN, Guo YK, Xu HY, Xu R, Liu X, Shen LT, Yang ZG. The additional impact of metabolic syndrome on left ventricular deformation and myocardial energetic efficiency impairment in ischemia with nonobstructive coronary arteries patients. Cardiovasc Diabetol. 2025;24(1):26.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen MT, Li Y, Shi K, Wang J, Jiang L, Jiang Y, Gao Y, Yu SQ, Li XM, Yan WF, et al. The adverse effect of metabolic syndrome on left ventricular global strains and myocardial energetic efficiency in non-ischemic dilated cardiomyopathy patients: a cardiac magnetic resonance study. Cardiovasc Diabetol. 2025;24(1):128.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. 2nd ed. New York: Guilford Press; 2018.

    Google Scholar 

  • Gelfand LA, Mensinger JL, Tenhave T. Mediation analysis: a retrospective snapshot of practice and more recent directions. J Gen Psychol. 2009;136(2):153–76.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Dominguez P, Gomez-Aviles P, Bautista-Garcia K, Antonio-Villa NE, Guerra EC, Almeda-Valdes P, Martagon AJ, Munoz AC, Santa-Ana-Bayona MJ, Alexanderson E, et al. Visceral adipose tissue mediates the relationship between left ventricular global longitudinal strain and insulin resistance among adults living with type 2 diabetes. Cardiovasc Diabetol. 2025;24(1):2.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choy M, Huang Y, Peng Y, Liang W, He X, Chen C, Li J, Zhu W, Wei FF, Dong Y, et al. Association between epicardial adipose tissue and incident heart failure mediating by alteration of natriuretic peptide and myocardial strain. BMC Med. 2023;21(1):117.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng ACT, Strudwick M, van der Geest RJ, Ng ACC, Gillinder L, Goo SY, Cowin G, Delgado V, Wang WYS, Bax JJ. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ Cardiovasc Imaging. 2018;11(8): e007372.

    PubMed 

    Google Scholar 

  • Hearon CM Jr., Reddy S, Dias KA, Shankar A, MacNamara J, Levine B, Sarma S. Characterizing regional and global effects of epicardial adipose tissue on cardiac systolic and diastolic function. Obesity. 2023;31(7):1884–93.

    PubMed 

    Google Scholar 

  • Evin M, Broadhouse KM, Callaghan FM, McGrath RT, Glastras S, Kozor R, Hocking SL, Lamy J, Redheuil A, Kachenoura N, et al. Impact of obesity and epicardial fat on early left atrial dysfunction assessed by cardiac MRI strain analysis. Cardiovasc Diabetol. 2016;15(1):164.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading