Multienzymatic nanocatalysts attenuate acute pancreatitis via dual modulation of pyroptotic pathways and autodigestion blockade | Journal of Nanobiotechnology

  • Iannuzzi JP, King JA, Leong JH, Quan J, Windsor JW, Tanyingoh D, et al. Global incidence of acute pancreatitis is increasing over time: A systematic review and meta-analysis. Gastroenterology. 2022;162(1):122–34.

    Google Scholar 

  • Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a review. JAMA. 2021;325(4):382–90.

    Google Scholar 

  • Szatmary P, Grammatikopoulos T, Cai W, Huang W, Mukherjee R, Halloran C, et al. Acute pancreatitis: Diagnosis and treatment. Drugs. 2022;82(12):1251–76.

    Google Scholar 

  • Boxhoorn L, Voermans RP, Bouwense SA, Bruno MJ, Verdonk RC, Boermeester MA, et al. Acute pancreatitis. Lancet. 2020;396(10252):726–34.

    Google Scholar 

  • Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(8):479–96.

    Google Scholar 

  • IAP/APA evidence-based guidelines for the management of acute pancreatitis, Pancreatology official journal of the International Association of Pancreatology (IAP) et al. 2013;13:e1 15.

  • Hackert T, Werner J. Antioxidant therapy in acute pancreatitis: experimental and clinical evidence. Antioxid Redox Signal. 2011;15(10):2767–77.

    Google Scholar 

  • Liu L, Zhang Y, Li X, Deng J. Microenvironment of pancreatic inflammation: Calling for nanotechnology for diagnosis and treatment. J Nanobiotechnol. 2023;21(1):443.

    Google Scholar 

  • Sah RP, Garg P, Saluja AK. Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol. 2012;28(5):507–15.

    Google Scholar 

  • Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Reddy DN, Talukdar R, et al. NF-κb in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology. 2016;16(4):477–88.

    Google Scholar 

  • Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage. Semin Immunol. 2023;69:101781.

    Google Scholar 

  • Du G, Healy LB, David L, Walker C, El-Baba TJ, Lutomski CA, et al. ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature. 2024;630(8016):437–46.

    Google Scholar 

  • Ren F, Xu J, Zhang J, Xu X, Huang L, Sun W, et al. PM(2.5) induced lung injury through upregulating ROS-dependent NLRP3 inflammasome-mediated pyroptosis. Immunobiology. 2022;227(3):152207.

    Google Scholar 

  • Zhang Y, Fang C, Zhang W, Zhang K. Emerging pyroptosis-engineered nanobiotechnologies regulate cancers and inflammatory diseases: A double-edged sword. Matter. 2022;5(11):3740–74.

    Google Scholar 

  • Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–54.

    Google Scholar 

  • Zhou J, Fang C, Rong C, Luo T, Liu J, Zhang K. Reactive oxygen species-sensitive materials: A promising strategy for regulating inflammation and favoring tissue regeneration. Smart Mater Med. 2023;4:427–46.

    Google Scholar 

  • Zhang R, Yan X, Fan K. Nanozymes inspired by natural enzymes. Acc Mater Res. 2021;2(7):534–47.

    Google Scholar 

  • Gao L, Wei H, Dong S, Yan X. Nanozymes. Adv Mater. 2024;36(10):e2305249.

    Google Scholar 

  • Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200.

    Google Scholar 

  • Hai X, Xi S, Mitchell S, Harrath K, Xu H, Akl DF, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nanotechnol. 2022;17(2):174–81.

    Google Scholar 

  • Chen Y, Wang P, Hao H, Hong J, Li H, Ji S, et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J Am Chem Soc. 2021;143(44):18643–51.

    Google Scholar 

  • Hua S, Dong X, Peng Q, Zhang K, Zhang X, Yang J. Single-atom nanozymes shines diagnostics of gastrointestinal diseases. J Nanobiotechnol. 2024;22(1):286.

    Google Scholar 

  • Zhang R, Yan X, Gao L, Fan K. Nanozymes expanding the boundaries of biocatalysis. Nat Commun. 2025;16(1):6817.

    Google Scholar 

  • Li Q, Zeng M, Pu XY, Tang Q, Yang Q, Zhang LK. Melittin-Loaded Multifunctional Nanozyme for Ulcerative Colitis Treatment via Enzyme-Immunotherapy and Ferroptosis Inhibition, Advanced functional materials. 2025.

  • Cao F, Jin L, Gao Y, Ding Y, Wen H, Qian Z, et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat Nanotechnol. 2023;18(6):617–27.

    Google Scholar 

  • Chen J, Zhao Y, Ruan R, Feng X, Niu Z, Pan L, et al. Bone morphogenetic protein-2-derived peptide-conjugated nanozyme-integrated photoenhanced hybrid hydrogel for cascade-regulated bone regeneration. ACS Nano. 2025;19(15):14707–26.

    Google Scholar 

  • Li D, Ai Z, Tian Y, Wang Y, Zhang C. Bioactive prosthetic interface constructed with cascading multi-nanozyme hydrogel to induce M2 macrophage polarization and heal diabetic bone defects. Biomaterials. 2025;325:123624.

    Google Scholar 

  • Li H, Wei S, Ling Q, Wang R, Liu T, Yu H, et al. Nanozyme-reinforced hydrogel spray as a reactive oxygen species-driven oxygenator to accelerate diabetic wound healing. Adv mater (Deerfield Beach, Fla). 2025;37(34):e2504829.

    Google Scholar 

  • Xuan Q, Cai J, Gao Y, Qiao X, Jin T, Peydayesh M, et al. Amyloid-templated ceria nanozyme reinforced microneedle for diabetic wound treatments. Adv mater (Deerfield Beach, Fla). 2025;37(15):e2417774.

    Google Scholar 

  • Shan Y, Zhong J, Sun Q, Gao W, Zhang C, Chen H, et al. Dual nanozymes-loaded core-shell microneedle patches with antibacterial and NETs-degradation bifunctional properties for periodontitis treatment. Bioact Mater. 2025;53:161–77.

    Google Scholar 

  • Wang D, Jin H, Shen Y, Wang D, He J, Qu J, et al. NIR-II-activated iridium single-atom nanozymes for synergistic antibacterial therapy and tissue regeneration in MRSA-infected wounds and acute lung injury. Bioact Mater. 2025;51:543–58.

    Google Scholar 

  • Lee H, Krishnan M, Kim M, Yoon YK, Kim Y. Rhamnetin, a natural flavonoid, ameliorates organ damage in a mouse model of carbapenem-resistant acinetobacter baumannii-induced sepsis. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms232112895.

    Google Scholar 

  • Novo Belchor M, Hessel Gaeta H, FabriBittencourt Rodrigues C, Ramos C, da Cruz Costa D, de Oliveira Toyama LF, et al. Evaluation of Rhamnetin as an inhibitor of the pharmacological effect of secretory phospholipase A2. Mol (Basel, Switz). 2017;22(9):1420–3049.

    Google Scholar 

  • Park ES, Kang JC, Jang YC, Park JS, Jang SY, Kim DE, et al. Cardioprotective effects of rhamnetin in H9c2 cardiomyoblast cells under H₂O₂-induced apoptosis. J Ethnopharmacol. 2014;153(3):552–60.

    Google Scholar 

  • Bull SD, Davidson MG, van den Elsen JM, Fossey JS, Jenkins AT, Jiang YB, et al. Exploiting the reversible covalent bonding of boronic acids: Recognition, sensing, and assembly. Acc Chem Res. 2013;46(2):312–26.

    Google Scholar 

  • Geng W, Jiang N, Qing GY, Liu X, Wang L, Busscher HJ, et al. Click reaction for reversible encapsulation of single yeast cells. ACS Nano. 2019;13(12):14459–67.

    Google Scholar 

  • Zhang K, Cheng Y, Ren W, Sun L, Liu C, Wang D, et al. Coordination-responsive longitudinal relaxation tuning as a versatile MRI sensing protocol for malignancy targets. Adv Sci. 2018;5(9):1800021.

    Google Scholar 

  • Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128.

    Google Scholar 

  • Continue Reading