Transient oxidation of hazes a source of nutrients during the great oxidation event

  • Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    ADS 
    PubMed 

    Google Scholar 

  • Farquhar, J. et al. Isotopic evidence for mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res. Planet. 106, 32829–32839 (2001).

    ADS 

    Google Scholar 

  • Catling, D. C. & Zahnle, K. J. The archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in archean sediments: strong evidence for an anoxic archean atmosphere. Astrobiology 2, 27–41 (2002).

    ADS 
    PubMed 

    Google Scholar 

  • Zahnle, K. J., Claire, M. W. & Catling, D. C. The loss of mass-independent fractionation in sulfur due to a paleoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    Google Scholar 

  • Sheldon, N. Precambrian paleosols and atmospheric CO2 levels. Precambrian Res. 147, 148–155 (2006).

    ADS 

    Google Scholar 

  • Driese, S. G. et al. Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res. 189, 1–17 (2011).

    ADS 

    Google Scholar 

  • Zahnle, K. J., Gacesa, M. & Catling, D. C. Strange messenger: A new history of hydrogen on earth, as told by Xenon. Geochim. Cosmochim. Acta. 244, 56–85 (2019).

    ADS 

    Google Scholar 

  • Kurokawa, H., Foriel, J., Laneuville, M., Houser, C. & Usui, T. Subduction and atmospheric escape of earth’s seawater constrained by hydrogen isotopes. Earth Planet. Sci. Lett. 497, 149–160 (2018).

    ADS 

    Google Scholar 

  • Stueeken, E. E. & Buick, R. Environmental control on microbial diversification and methane production in the mesoarchean. https://doi.org/10.1016/j.precamres.2017.11.003 (2018).

  • Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • KHARECHA, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early archean Earth. Geobiology 3, 53–76 (2005).

    Google Scholar 

  • Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y. & Reinhard, C. T. Effects of primitive photosynthesis on earth’s early climate system. Nat. Geosci. 11, 55–59 (2018).

    ADS 

    Google Scholar 

  • Israël, G. et al. Complex organic matter in titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438, 796–799 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • Arney, G. et al. The pale orange dot: the spectrum and habitability of hazy archean Earth. Astrobiology 16, 873–899 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the archean Earth. Astrobiology 8, 1127–1137 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Sagan, C. & Chyba, C. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221 (1997).

    ADS 
    PubMed 

    Google Scholar 

  • Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359–363 (2012).

    ADS 

    Google Scholar 

  • Izon, G. et al. Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet. Sci. Lett. 431, 264–273 (2015).

    ADS 

    Google Scholar 

  • Thomazo, C., Nisbet, E., Grassineau, N., Peters, M. & Strauss, H. Multiple sulfur and carbon isotope composition of sediments from the Belingwe greenstone belt (Zimbabwe): A biogenic methane regulation on mass independent fractionation of sulfur during the neoarchean?? Geochim. Cosmochim. Acta. 121, 120–138 (2013).

    ADS 

    Google Scholar 

  • Flannery, D. et al. Spatially-resolved isotopic study of carbon trapped in 3.43 Ga Strelley pool formation stromatolites. Geochim Cosmochim. Acta 223, (2017).

  • Trainer, M. G. et al. Organic haze on Titan and the early Earth. Proc. Natl. Acad. Sci. U. S. A. 103, 18035–18042 (2006).

  • Fleury, B. et al. Influence of CO on Titan atmospheric reactivity. Icarus 238, 221–229 (2014).

    ADS 

    Google Scholar 

  • Atkinson, R. & Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 103, 4605–4638 (2003).

    PubMed 

    Google Scholar 

  • Rudich, Y., Donahue, N. M. & Mentel, T. F. Aging of organic aerosol: bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 58, 321–352 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Sprengnether, M., Demerjian, K. L., Donahue, N. M. & Anderson, J. G. Product analysis of the OH oxidation of isoprene and 1,3-butadiene in the presence of NO. J. Geophys. Res. Atmos. 107, ACH 8-1-ACH 8–13 (2002).

  • Volkamer, R. et al. OH-initiated oxidation of benzene. Phys. Chem. Chem. Phys. 4, 1598–1610 (2002).

    Google Scholar 

  • Brassé, C., Buch, A., Coll & Raulin, F. Low-Temperature alkaline pH hydrolysis of Oxygen-Free Titan tholins: carbonates’ impact. Astrobiology 17, 8–26 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Neish, C. D., Somogyi, Á. & Smith, M. A. Titan’s primordial soup: formation of amino acids via Low-Temperature hydrolysis of Tholins. Astrobiology 10, 337–347 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Khare, B. N. et al. Amino acids derived from Titan Tholins. Icarus 68, 176–184 (1986).

    ADS 
    PubMed 

    Google Scholar 

  • Derenne, S. et al. New insights into the structure and chemistry of titan’s Tholins via 13 C and 15 N solid state nuclear magnetic resonance spectroscopy. Icarus 221, 844–853 (2012).

    ADS 

    Google Scholar 

  • Gautier, T. et al. Development of HPLC-Orbitrap method for identification of N-bearing molecules in complex organic material relevant to planetary environments. Icarus 275, 259–266 (2016).

    ADS 

    Google Scholar 

  • Morisson, M., Szopa, C., Carrasco, N., Buch, A. & Gautier, T. Titan’s organic aerosols: molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis. Icarus 277, 442–454 (2016).

    ADS 

    Google Scholar 

  • Quirico, E. et al. New experimental constraints on the composition and structure of Tholins. Icarus 198, 218–231 (2008).

    ADS 

    Google Scholar 

  • Maillard, J. et al. Humid evolution of haze in the atmosphere of Super-Earths in the habitable zone. Astrobiology 23, 723–732 (2023).

    ADS 
    PubMed 

    Google Scholar 

  • Poch, O., Coll, P., Buch, A., Ramírez, S. I. & Raulin, F. Production yields of organics of Astrobiological interest from H2O–NH3 hydrolysis of titan’s Tholins. Planet. Space Sci. 61, 114–123 (2012).

    ADS 

    Google Scholar 

  • Jaziri, A. Y., Charnay, B., Selsis, F., Leconte, J. & Lefèvre, F. Dynamics of the great oxidation event from a 3D photochemical–climate model. Clim. Past. 18, 2421–2447 (2022).

    Google Scholar 

  • Velivetskaya, T. A., Ignatiev, A. V., Vysotskiy, S. V. & Aseeva, A. V. Ratios of sulfur isotopes (32S, 33S, 34S, and 36S) in archean rocks of karelia: evidence of microbial life and the anoxic atmosphere. Russ Geol. Geophys. 65, 689–698 (2024).

    Google Scholar 

  • Archer, C. & Vance, D. Coupled Fe and S isotope evidence for archean microbial Fe(III) and sulfate reduction. Geology 34, 153–156 (2006).

    ADS 

    Google Scholar 

  • Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).

    ADS 

    Google Scholar 

  • Schopf, J. W. The fossil record of cyanobacteria. in Ecology of Cyanobacteria II: their Diversity in Space and time (ed Whitton, B. A.) 15–36 (Springer Netherlands, Dordrecht, doi:https://doi.org/10.1007/978-94-007-3855-3_2. (2012).

    Google Scholar 

  • de Bueno, C. P., Wu, D. & Tringe, S. G. Methyl-Based methanogenesis: an ecological and genomic review. Microbiol. Mol. Biol. Rev. MMBR. 87, e00024–e00022 (2013).

    Google Scholar 

  • Blaut, M. Metabolism of methanogens. Antonie Van Leeuwenhoek. 66, 187–208 (1994).

    PubMed 

    Google Scholar 

  • Schauder, R. & Kröger, A. Bacterial sulphur respiration. Arch. Microbiol. 159, 491–497 (1993).

    Google Scholar 

  • Ebrahiminezhad, A., Manafi, Z., Berenjian, A., Kianpour, S. & Ghasemi, Y. Iron-Reducing bacteria and iron nanostructures. J. Adv. Med. Sci. Appl. Technol. 3, 9 (2017).

    Google Scholar 

  • Bonch-Osmolovskaya, E. A., Sokolova, T. G., Kostrikina, N. A. & Zavarzin, G. A. Desulfurella acetivorans gen. Nov. And sp. Nov. —a new thermophilic sulfur-reducing Eubacterium. Arch. Microbiol. 153, 151–155 (1990).

    Google Scholar 

  • Straub, K. L. & Buchholz-Cleven, B. E. Geobacter Bremensis sp. Nov. And geobacter pelophilus sp. Nov., two dissimilatory ferric-iron-reducing bacteria. Int. J. Syst. Evol. Microbiol. 51, 1805–1808 (2001).

    PubMed 

    Google Scholar 

  • Veglió, F., Passariello, B., Barbaro, M., Plescia, P. & Marabini, A. M. Drum leaching tests in iron removal from quartz using oxalic and sulphuric acids. Int. J. Min. Process. 54, 183–200 (1998).

    Google Scholar 

  • Veaudor, T., Cassier-Chauvat, C. & Chauvat, F. Genomics of Urea transport and catabolism in cyanobacteria: biotechnological implications. Front. Microbiol. 10, 2052 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomon, C., Collier, J., Berg, G. & Glibert, P. Role of Urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquat. Microb. Ecol. 59, 67–88 (2010).

    Google Scholar 

  • Grettenberger, C. L. et al. A phylogenetically novel Cyanobacterium most closely related to Gloeobacter. ISME J. 14, 2142–2152 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lahav, N., White, D. & Chang, S. Peptide formation in the prebiotic era: thermal condensation of Glycine in fluctuating clay environments. Science 201, 67–69 (1978).

    ADS 
    PubMed 

    Google Scholar 

  • Wolf, E. T. & Toon, O. B. Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328, 1266–1268 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Philos. Trans. R Soc. B Biol. Sci. 361, 1819–1836 (2006).

    Google Scholar 

  • Szopa, C., Cernogora, G., Boufendi, L., Correia, J. J. & Coll, P. PAMPRE: A dusty plasma experiment for titan’s Tholins production and study. Planet. Space Sci. 54, 394–404 (2006).

    ADS 

    Google Scholar 

  • Continue Reading