Sensor-based assessment of fertilizer strategies in soybean: linking SPAD, NDVI, plant height, and thermal imaging with biomass accumulation | BMC Plant Biology

  • FAO. FAO Statistical Yearbook 2023. Food and Agriculture Organization of the United Nation. 2023.

  • Helios W, Serafin-Andrzejewska M, Kozak M, Lewandowska S. Impact of nitrogen fertilisation and inoculation on soybean nodulation, nitrogen status, and yield in a central European climate. Agriculture (Basel). 2025;15(15):1654.

    Article 

    Google Scholar 

  • Luo D, Chen Y, Lin H. Agronomic Optimization of Fertilization and Irrigation Regimes for High-Yield Soybean Cultivation. Field Crop. 2025;8(4):176–86.

    Google Scholar 

  • Luo K, Yuan X, Zhang K, Fu Z, Lin P, Li Y, Yong T, et al. Soybean Variety Improves Canopy Architecture and Light Distribution to Promote Yield Formation in Maize–Soybean Strip Intercropping. Plant Cell Environ. 2025.

  • Ali MF, Ma L, Sohail S, Zulfiqar U, Hussain T, Lin X, et al. Zinc biofortification in cereal crops: overview and prospects. J Soil Sci Plant Nutr. 2025;25:4260–94. https://doi.org/10.1007/s42729-025-02396-x.

    Article 

    Google Scholar 

  • Brahma B, Hammermeister A, Lynch D, Smith P, Nath AJ. Significance of land management practices under haskap orchards to mitigate the degradations of soil organic carbon stocks and soil health because of land use changes from forest and grassland. Soil Use Manage. 2025;41(1):e70037.

    Article 

    Google Scholar 

  • Aarif M, Alam A, Hotak Y. Smart sensor technologies shaping the future of precision agriculture: Recent advances and future outlooks. J Sensors. 2025;2025:2460098.

  • Lhotáková Z, Neuwirthová E, Potůčková M, Červená L, Hunt L, Kupková L, et al. Mind the leaf anatomy while taking ground truth with portable chlorophyll meters. Sci Rep. 2025;15(1):1855.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsaniklidis G, Makraki T, Papadimitriou D, Nikoloudakis N, Taheri-Garavand A, Fanourakis D. Non-destructive estimation of area and greenness in leaf and seedling scales: a case study in cucumber. Agronomy. 2025;15(10):2294.

    Article 

    Google Scholar 

  • Bulacio Fischer PT, Carella A, Massenti R, Fadhilah R, Lo Bianco R. Advances in monitoring crop and soil nutrient status: proximal and remote sensing techniques. Horticulturae. 2025;11(2):182. https://doi.org/10.3390/horticulturae11020182.

    Article 

    Google Scholar 

  • Paul NC, Ponnaganti N, Gaikwad BB, Sammi Reddy K, Nangare DD. Optimized soil adjusted vegetation index mapping of Pune district using Google Earth Engine. Remote Sens Lett. 2025;16(7):728–36.

    Article 

    Google Scholar 

  • Yan K, Gao S, Yan G, Ma X, Chen X, Zhu P, et al. A global systematic review of the remote sensing vegetation indices. Int J Appl Earth Obs Geoinf. 2025;139:104560.

    Google Scholar 

  • Berry A, Vivier MA, Poblete-Echeverría C. Evaluation of canopy fraction-based vegetation indices, derived from multispectral UAV imagery, to map water status variability in a commercial vineyard. Irrig Sci. 2025;43(1):135–53.

    Article 

    Google Scholar 

  • Anand SL, Visakh R, Nalishma R, Sah RP, Beena R. High throughput phenomics in elucidating drought stress responses in rice (Oryza sativa L.). J Plant Biochem Biotechnol. 2025;34(1):119–32. https://doi.org/10.1007/s13562-024-00949-2.

  • Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens Environ. 2020;237:111599.

    Article 

    Google Scholar 

  • Xie C, Yang C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput Electron Agric. 2020;178:105731.

    Article 

    Google Scholar 

  • Nugroho AP, Wiratmoko A, Nugraha D, Markumningsih S, Sutiarso L, Falah MAF, Okayasu T. Development of a low-cost thermal imaging system for water stress monitoring in indoor farming. Smart Agric Technol 2025;11:101048. https://doi.org/10.1016/j.atech.2025.101048.

  • Yang CY, Zhang YC, Hou YL. Assessing water status in rice plants in water-deficient environments using thermal imaging. Bot Stud (Taipei). 2025;66(1):6.

    Article 

    Google Scholar 

  • Sharma H, Sidhu H, Bhowmik A. Remote sensing using unmanned aerial vehicles for water stress detection: a review focusing on specialty crops. Drones. 2025;9(4):241.

    Article 

    Google Scholar 

  • Zhai W, Cheng Q, Duan F, Huang X, Chen Z. Remote sensing-based analysis of yield and water-fertilizer use efficiency in winter wheat management. Agric Water Manage. 2025;311:109390.

    Article 

    Google Scholar 

  • Denre M, Shyamrao ID, Kumar A. Study on zinc as plant nutrient: a review. J Sci Res Rep. 2025;31(6):972–99.

    Article 

    Google Scholar 

  • Madaan I, Sharma P, Singh AD, Dhiman S, Kour J, Kumar P, et al. Zinc and plant hormones: an updated review. Zinc in Plants; 2025. p. 193–223. ISBN: 978-0-323-91314-0.

  • Pelagio-Flores R, Ravelo-Ortega G, García-Pineda E, López-Bucio J. A century of Azospirillum: plant growth promotion and agricultural promise. Plant Signal Behav. 2025;20(1):2551609.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Egli DB, Bruening WP. Temporal profiles of pod production and pod set in soybean. Eur J Agron. 2006;24(1):11–8.

    Article 

    Google Scholar 

  • Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res. 2007;91(1):37–46.

    Article 
    PubMed 

    Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol. 2007;173(4):677–702.

    Article 
    PubMed 

    Google Scholar 

  • Díaz-Rodríguez AM, Parra Cota FI, Cira Chávez LA, García Ortega LF, Estrada Alvarado MI, Santoyo G, et al. Microbial inoculants in sustainable agriculture: advancements, challenges, and future directions. Plants. 2025;14(2):191.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hungria M, Campo RJ, Mendes IC, Graham PH. Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In: Singh RP, Shankar N, Jaiwal PK, editors. Nitrogen nutrition and sustainable plant productivity. Houston: Studium Press; 2006. p. 43–93. ISBN 1-933699-00-0.

  • Lee H, Kang Y, Kim J. Remote sensing-based assessment of soybean growth and yield prediction using integrated spectral and thermal indices. Front Plant Sci. 2023;14:1182314. https://doi.org/10.3389/fpls.2023.1182314.

    Article 

    Google Scholar 

  • Ma BL, Dwyer LM, Costa C, Cober ER, Morrison MJ. Early prediction of soybean yield from canopy reflectance measurements. Agron J. 2001;93(6):1227–34.

    Article 

    Google Scholar 

  • Pineda M, Perez-Bueno ML, Barón M, Calderón R. Assessment of crop performance under stress conditions by remote sensing: A case study in soybean. Agric For Meteorol. 2021;311:108663. https://doi.org/10.1016/j.agrformet.2021.108663.

    Article 

    Google Scholar 

  • Richardson AD, Duigan SP, Berlyn GP. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002;153(1):185–94.

    Article 

    Google Scholar 

  • Gitelson AA. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol. 2004;161(2):165–73.

    Article 
    PubMed 

    Google Scholar 

  • Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ. 2003;86(4):542–53.

    Article 

    Google Scholar 

  • Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ. 1996;55(2):95–107.

    Article 

    Google Scholar 

  • Kumagai E, Aoki N, Masuya Y, Shimono H. Phenotypic plasticity conditions the response of soybean seed yield to elevated atmospheric CO2 concentration. Plant Physiol. 2015;169(3):2021–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Turnage, G. Sampling Submersed Aquatic Plant Biomass: Fresh vs. Dry Weight. GeoSystems Research Institute Report, 5093. Mississippi State University. 2022.

  • Xu Z, Zhou G. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biol. 2011;11(1):21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan S, Weng B, Jing L, Bi W. Effects of drought stress on water content and biomass distribution in summer maize (Zea mays L.). Front Plant Sci. 2023;14:1118131.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez, K.A., and A. A. Gomez. Statistical procedures for agricultural research. 2 st Ed. John wiley and sons; New York (U.S.A.). 1984. https://pdf.usaid.gov/pdf_docs/PNAAR208.pdf

  • McKinney W. Data structures for statistical computing in Python. Scipy. 2010;445(1):51–6.

    Google Scholar 

  • Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(03):90–5.

    Article 

    Google Scholar 

  • Waskom ML. Seaborn: statistical data visualization. J Open Source Softw. 2021;6(60):3021.

    Article 

    Google Scholar 

  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tunc M, Ipekesen S, Basdemir F, Akinci C, Bicer BT. Effect of Organic and Inorganic Fertilizer Doses on Yield and Yield Components of Common Beans. J Anim Plant Sci. 2023;33:1333–45. https://doi.org/10.36899/JAPS.2023.6.0673.

  • Hungria M, de O Chueire LM, Coca RG, Megı́as M. Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biol Biochem. 2001;33(10):1349–61.

    Article 

    Google Scholar 

  • Fritschi FB, Ray JD. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 2007;45(1):92–8.

    Article 

    Google Scholar 

  • Zhao C, Liu B, Xiao L, Hoogenboom G, Boote KJ, Kassie BT, et al. A SIMPLE crop model. Eur J Agronomy. 2018;100:138–53. https://doi.org/10.1016/j.eja.2018.01.002.

    Article 

    Google Scholar 

  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ. 2004;90(3):337–52.

    Article 

    Google Scholar 

  • Peng S, Chen A, Xu L, Cao C, Fang J, Myneni RB, et al. Recent change of vegetation growth trend in China. Environ Res Lett. 2011;6(4):044027.

    Article 

    Google Scholar 

  • Moges SM, Raun WR, Mullen RW, Freeman KW, Johnson GV, Solie JB. Evaluation of mid-season spectral reflectance indices for predicting grain yield and grain protein in winter wheat. J Plant Nutr. 2005;27(6):1061–80. https://doi.org/10.1081/PLN-120038544.

    Article 

    Google Scholar 

  • Rufaioğlu SB, Bilgili AV, Savaşlı E, Özberk İ, Aydemir S, Ismael AM, et al. Sensor-based yield prediction in durum wheat under semi-arid conditions using machine learning across Zadoks growth stages. Remote Sens. 2025;17(14):2416.

    Article 

    Google Scholar 

  • Jones HG. Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot. 2004;55(407):2427–36.

    Article 
    PubMed 

    Google Scholar 

  • Costa JM, Grant OM, Chaves MM. Thermography to explore plant–environment interactions. J Exp Bot. 2013;64(13):3937–49.

    Article 
    PubMed 

    Google Scholar 

  • Prasad B, Carver BF, Stone ML, Babar MA, Raun WR, Klatt AR. Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices in wheat breeding. Field Crop Res. 2017;200:1–13. https://doi.org/10.1016/j.fcr.2016.10.001.

    Article 

    Google Scholar 

  • González-Dugo V, Zarco-Tejada PJ, Fereres E. Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agric For Meteorol. 2014;198:94–104.

    Article 

    Google Scholar 

  • Continue Reading