Temperature-dependent survival of Mycoplasma anserisalpingitidis in water: implications for biosecurity and transmission in waterfowl farming | BMC Veterinary Research

  • Ferguson-Noel N, Armour NK, Noormohammadi AH, El-Gazzar M, Bradbury JM. Mycoplasmosis. In: Swayne DE, editor. Diseases of Poultry. 14th ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2020. p. 907–65.

    Google Scholar 

  • Volokhov DV, Grózner D, Gyuranecz M, Ferguson-Noel N, Gao Y, Bradbury JM, et al. Mycoplasma anserisalpingitidis sp. nov., isolated from European domestic geese (Anser anser domesticus) with reproductive pathology. Int J Syst Evol Microbiol. 2020;70:2369–81. https://doi.org/10.1099/ijsem.0.004052.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sawicka-Durkalec A, Tomczyk G, Kursa O, Stenzel T, Gyuranecz M. Evidence of Mycoplasma spp. Transmission by migratory wild geese. Poult Sci. 2022;101:101526. https://doi.org/10.1016/j.psj.2021.101526.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Polak-Vogelzang AA. Survival of Mycoplasma gallisepticum in mains water. Avian Pathol. 1977;6:93–5. https://doi.org/10.1080/03079457708418215.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marois C, Savoye C, Kobisch M, Kempf I. A reverse transcription-PCR assay to detect viable Mycoplasma synoviae in poultry environmental samples. Vet Microbiol. 2002;89:17–28. https://doi.org/10.1016/S0378-1135(02)00159-1.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marois C, Dufour-Gesbert F, Kempf I. Polymerase chain reaction for detection of Mycoplasma gallisepticum in environmental samples. Avian Pathol. 2002;31:163–8. https://doi.org/10.1080/03079450120118658.

    Article 
    PubMed 

    Google Scholar 

  • Marois C, Picault J-P, Kobisch M, Kempf I. Experimental evidence of indirect transmission of Mycoplasma synoviae. Vet Res. 2005;36:759–69. https://doi.org/10.1051/vetres:2005031.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Münster P, Kemper N. Long-term analysis of drinking water quality in poultry and pig farms in Northwest Germany. Front Anim Sci. 2024;5:1467287. https://doi.org/10.3389/fanim.2024.1467287.

    Article 

    Google Scholar 

  • Elmberg J, Berg C, Lerner H, Waldenström J, Hessel R. Potential disease transmission from wild geese and swans to livestock, poultry and humans : a review of the scientific literature from a one health perspective. Infect Ecol Epidemiol. 2017;7. https://doi.org/10.1080/20008686.2017.1300450.

  • Abulreesh HH, Paget TA, Goulder R. Waterfowl and the bacteriological quality of amenity ponds. J Water Health. 2004;2:183–9. https://doi.org/10.2166/wh.2004.0016.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gonzalez JM, Aranda B. Microbial growth under limiting Conditions-Future perspectives. Microorganisms. 2023;11:1641. https://doi.org/10.3390/microorganisms11071641.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arana I, Muela A, Orruño M, Seco C, Garaizabal I, Barcina I. Effect of temperature and starvation upon survival strategies of Pseudomonas fluorescens CHA0: comparison with Escherichia coli. FEMS Microbiol Ecol. 2010;74:500–9. https://doi.org/10.1111/j.1574-6941.2010.00979.x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nedwell DB. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol. 2006;30:101–11. https://doi.org/10.1111/j.1574-6941.1999.tb00639.x.

    Article 

    Google Scholar 

  • Marmion M, Macori G, Ferone M, Whyte P, Scannell AGM. Survive and thrive: control mechanisms that facilitate bacterial adaptation to survive manufacturing-related stress. Int J Food Microbiol. 2022;368:109612. https://doi.org/10.1016/j.ijfoodmicro.2022.109612.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature matters: bacterial response to temperature change. J Microbiol. 2023;61:343–57. https://doi.org/10.1007/s12275-023-00031-x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Citti C, Blanchard A. Mycoplasmas and their host: emerging and re-emerging minimal pathogens. Trends Microbiol. 2013;21:196–203. https://doi.org/10.1016/j.tim.2013.01.003.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rocha EPC, Blanchard A. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res. 2002;30:2031–42. https://doi.org/10.1093/nar/30.9.2031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katz SD. The Streak Plate Protocol. Am Soc Microbiol. 2008;1–10. https://asm.org/asm/media/protocol-images/the-streak-plate-protocol.pdf.

  • Grózner D, Sulyok KM, Kreizinger Z, Rónai Z, Jánosi S, Turcsányi I, et al. Detection of Mycoplasma anatis, M. anseris, M. cloacale and Mycoplasma sp. 1220 in waterfowl using species-specific PCR assays. PLoS ONE. 2019;14:e0219071. https://doi.org/10.1371/journal.pone.0219071.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gioia G, Werner B, Nydam DV, Moroni P. Validation of a Mycoplasma molecular diagnostic test and distribution of Mycoplasma species in bovine milk among new York state dairy farms. J Dairy Sci. 2016;99:4668–77. https://doi.org/10.3168/jds.2015-10724.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hannan PCT. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary Mycoplasma species. Vet Res. 2000;31:373–95. https://doi.org/10.1051/vetres:2000100.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bekő K, Grózner D, Mitter A, Udvari L, Földi D, Wehmann E, et al. Development and evaluation of temperature-sensitive Mycoplasma anserisalpingitidis clones as vaccine candidates. Avian Pathol. 2022;51:535–49. https://doi.org/10.1080/03079457.2022.2102967.

    Article 
    PubMed 

    Google Scholar 

  • Terry M. Therneau, Patricia M. Grambsch. Modeling Survival Data: Extending the Cox Model. New York: Springer; 2000.

  • Tang Y, Horikoshi M, Li W. Ggfortify: unified interface to visualize statistical results of popular R packages. R J. 2016;8:474. https://doi.org/10.32614/RJ-2016-060.

    Article 

    Google Scholar 

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016. https://doi.org/10.1007/978-3-319-24277-4.

  • R Core Team. R: A Language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing; 2025.

    Google Scholar 

  • Posit team. RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston: MA; 2025. http://www.posit.co/.

  • Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol. 2012;91–210. https://doi.org/10.1016/B978-0-12-398264-3.00002-4.

  • Nagatomo H. Comparative studies of the persistence of animal Mycoplasmas under different environmental conditions. Vet Microbiol. 2001;82:223–32. https://doi.org/10.1016/S0378-1135(01)00385-6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Justice-Allen A, Trujillo J, Corbett R, Harding R, Goodell G, Wilson D. Survival and replication of Mycoplasma species in recycled bedding sand and association with mastitis on dairy farms in Utah. J Dairy Sci. 2010;93:192–202. https://doi.org/10.3168/jds.2009-2474.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nouvel LX, Sirand-Pugnet P, Marenda MS, Sagné E, Barbe V, Mangenot S, et al. Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping Mycoplasma diversity. BMC Genomics. 2010;11:86. https://doi.org/10.1186/1471-2164-11-86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE, Ferguson-Noel N, et al. Ultrafast evolution and loss of crisprs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet. 2012;8:e1002511. https://doi.org/10.1371/journal.pgen.1002511.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bekő K, Nagy EZ, Grózner D, Kreizinger Z, Gyuranecz M. Biofilm formation and its impact on environmental survival and antibiotic resistance of Mycoplasma anserisalpingitidis strains. Acta Vet Hung. 2022;70:184–91. https://doi.org/10.1556/004.2022.00029.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rossi C, Chaves-López C, Serio A, Goffredo E, Cenci Goga BT, Paparella A. Influence of incubation conditions on biofilm formation by Pseudomonas fluorescens isolated from dairy products and dairy manufacturing plants. Ital J Food Saf. 2016;5. https://doi.org/10.4081/ijfs.2016.5793.

  • De Plano LM, Caratozzolo M, Conoci S, Guglielmino SPP, Franco D. Impact of nutrient starvation on biofilm formation in Pseudomonas aeruginosa: an analysis of growth, adhesion, and Spatial distribution. Antibiotics. 2024;13:987. https://doi.org/10.3390/antibiotics13100987.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catania S, Bottinelli M, Fincato A, Tondo A, Matucci A, Nai G, et al. Pathogenic avian Mycoplasmas show phenotypic differences in their biofilm forming ability compared to non-pathogenic species in vitro. Biofilm. 2024;7:100190. https://doi.org/10.1016/j.bioflm.2024.100190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. Survival guide: Escherichia coli in the stationary phase. Acta Naturae. 2015;7:22–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev. 2010;34:476–95. https://doi.org/10.1111/j.1574-6976.2010.00213.x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hazan R, Schoemann M, Klutstein M. Endurance of extremely prolonged nutrient prevention across kingdoms of life. iScience. 2021;24:102745. https://doi.org/10.1016/j.isci.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chernov VM, Gogolev YV, Mukhametshina NE, Abdrakhimov FA, Chernova OA. Mycoplasma adaptation to biogenic and abiogenic stessful factors; Acholeplasma laidlawii nannotransformation and minibodies. Prog Nucl Energy 6 Biol Sci. 2003;396:417–20. https://doi.org/10.0012/4966/04/0506-0251.

  • Demina IA, Serebryakova MV, Ladygina VG, Rogova MA, Kondratov IG, Renteeva AN, et al. Proteomic characterization of Mycoplasma gallisepticum nanoforming. Biochem (Moscow). 2010;75:1252–7. https://doi.org/10.1134/S0006297910100068.

    Article 
    CAS 

    Google Scholar 

  • Chernov VM, Chernova OA, Gorshkov OV, Muzykantov AA, Shaimardanova GF, Pel’nikevich AD, et al. Adaptation of Mycoplasma gallisepticum to unfavorable growth conditions: changes in morphological and physiological characteristics. Microbiol (N Y). 2008;77:691–4. https://doi.org/10.1134/S0026261708060064.

    Article 
    CAS 

    Google Scholar 

  • Chernov VM, Chernova OA, Medvedeva ES, Sorvina AI, Davydova MN, Rogova MA, et al. Responses of Acholeplasma Laidlawii PG8 cells to cold shock and oxidative stress: proteomic analysis and stress-reactive Mycoplasma proteins. Dokl Biochem Biophys. 2010;432:126–30. https://doi.org/10.1134/S1607672910030099.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking water and biofilm as sources of antimicrobial resistance in Free-Range organic broiler farms. Antibiotics. 2024;13:808. https://doi.org/10.3390/antibiotics13090808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mustedanagic A, Matt M, Weyermair K, Schrattenecker A, Kubitza I, Firth CL, et al. Assessment of microbial quality in poultry drinking water on farms in Austria. Front Vet Sci. 2023;10:1254442. https://doi.org/10.3389/fvets.2023.1254442.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapperud G, Skjerve E, Vik L, Hauge K, Lysaker A, Aalmen I, et al. Epidemiological investigation of risk factors for Campylobacter colonization in Norwegian broiler flocks. Epidemiol Infect. 1993;111:245–55. https://doi.org/10.1017/s0950268800056958.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sparks NHC. The role of the water supply system in the infection and control of Campylobacter in chicken. Worlds Poult Sci J. 2009;65:459–74. https://doi.org/10.1017/S0043933909000324.

    Article 

    Google Scholar 

  • Gbylik-Sikorska M, Posyniak A, Sniegocki T, Sell B, Gajda A, Sawicka A, et al. Influence of enrofloxacin traces in drinking water to doxycycline tissue pharmacokinetics in healthy and infected by Mycoplasma gallisepticum broiler chickens. Food Chem Toxicol. 2016;90:123–9. https://doi.org/10.1016/j.fct.2016.02.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading