Reconfigurable artificial neuron and synapse enabled through a single alloyed memristor

  • Jia, Z. et al. The importance of resource awareness in artificial intelligence for healthcare. Nat. Mach. Intell. 5, 687–698 (2023).

    Google Scholar 

  • Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X. 2, 89–124 (2017).

    Google Scholar 

  • Aguirre, F. et al. Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15, 1974 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Google Scholar 

  • Zhou, G. et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 8, 2101127 (2022).

    CAS 

    Google Scholar 

  • Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    ADS 

    Google Scholar 

  • Sokolov, A. S., Abbas, H., Abbas, Y. & Choi, C. Towards engineering in memristors for emerging memory and neuromorphic computing: A review. J. Semicond. 42, 013101 (2021).

    Google Scholar 

  • Zhang, X., Huang, A., Hu, Q., Xiao, Z. & Chu, P. K. Neuromorphic computing with memristor crossbar. Phys. Status Solidi A. 215, 1700875 (2018).

    ADS 

    Google Scholar 

  • Upadhyay, N. K. et al. Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 4, 1800589 (2019).

    Google Scholar 

  • Thomas, A. Memristor-based neural networks. J. Phys. Appl. Phys. 46, 093001 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, X. et al. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 53, 8720–8746 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Moon, K. et al. RRAM-based synapse devices for neuromorphic systems. Faraday Discuss. 213, 421–451 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, Z. et al. Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 10, 1437 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Abbas, H. et al. The coexistence of threshold and memory switching characteristics of ALD HfO 2 memristor synaptic arrays for energy-efficient neuromorphic computing. Nanoscale 12, 14120–14134 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutta, M., Brivio, S. & Spiga, S. Unraveling the roles of switching and relaxation times in volatile electrochemical memristors to mimic neuromorphic dynamical features. Adv. Electron. Mater. 10, 2400221 (2024).

    CAS 

    Google Scholar 

  • Yan, X. et al. A low-power reconfigurable memristor for artificial neurons and synapses. Appl. Phys. Lett. 122, 042101 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Sahu, M. C. et al. Reconfigurable low-power TiO2 memristor for integration of artificial synapse and nociceptor. ACS Appl. Mater. Interfaces. 15, 25713–25725 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, T. et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13, 7432 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Electrochemical and thermodynamic processes of metal nanoclusters enabled biorealistic synapses and leaky-integrate-and-fire neurons. Mater. Horiz. 7, 71–81 (2020).

    CAS 

    Google Scholar 

  • Bao, L. et al. Dual-gated MoS2 neuristor for neuromorphic computing. ACS Appl. Mater. Interfaces. 11, 41482–41489 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Memristive field-programmable analog arrays for analog computing. Adv. Mater. 35, 2206648 (2023).

    CAS 

    Google Scholar 

  • Passerini, E. et al. Controlling volatility and nonvolatility of memristive devices by Sn alloying. ACS Appl. Electron. Mater. 5, 6842–6849 (2023).

    CAS 

    Google Scholar 

  • Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hsiung, C. P. et al. Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano. 4, 5414–5420 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yeon, H. et al. Alloying conducting channels for reliable neuromorphic computing. Nat. Nanotechnol. 15, 574–579 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y., Mahata, C., Kang, M. & Kim, S. Short-term and long-term synaptic plasticity in Ag/HfO2/SiO2/Si stack by controlling conducting filament strength. Appl. Surf. Sci. 565, 150563 (2021).

    CAS 

    Google Scholar 

  • Wang, Z. et al. Threshold switching of ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28, 1704862 (2018).

    Google Scholar 

  • Ali, A. et al. Versatile GeS-based CBRAM with compliance-current-controlled threshold and bipolar resistive switching for electronic synapses. Appl. Mater. Today. 29, 101554 (2022).

    Google Scholar 

  • La Barbera, S., Vuillaume, D. & Alibart, F. Filamentary switching: synaptic plasticity through device volatility. ACS Nano. 9, 941–949 (2015).

    PubMed 

    Google Scholar 

  • Chekol, S. A., Menzel, S., Waser, R. & Hoffmann-Eifert, S. Strategies to control the relaxation kinetics of Ag-based diffusive memristors and implications for device operation. Adv. Electron. Mater. 8, 2200549 (2022).

    CAS 

    Google Scholar 

  • Kim, M. K. & Lee, J. S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano. 12, 1680–1687 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Chekol, S. A., Nacke, R., Aussen, S. & Hoffmann-Eifert, S. SET kinetics of Ag/HfO2-Based diffusive memristors under various counter-electrode materials. Micromachines 14, 571 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chekol, S. A., Menzel, S., Ahmad, R. W., Waser, R. & Hoffmann-Eifert, S. Effect of the threshold kinetics on the filament relaxation behavior of Ag-based diffusive memristors. Adv. Funct. Mater. 32, 2111242 (2022).

    CAS 

    Google Scholar 

  • Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: from Single Neurons To Networks and Models of Cognition (Cambridge University Press, 2014).

  • Pedone, A., Bertani, M., Brugnoli, L. & Pallini, A. Interatomic potentials for oxide glasses: past, present, and future. J. Non-Cryst Solids X. 15, 100115 (2022).

    CAS 

    Google Scholar 

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    CAS 

    Google Scholar 

  • Evans, D. J. & Morriss, G. P. Nonlinear-response theory for steady planar couette flow. Phys. Rev. A. 30, 1528–1530 (1984).

    ADS 
    CAS 

    Google Scholar 

  • Continue Reading