Dynamics of postnatal upper airway bacteria colonization in preterm infants

  • Hou, K. et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7, 135 (2022).

    Google Scholar 

  • Aguilar-Lopez, M., Dinsmoor, A. M., Ho, T. T. B. & Donovan, S. M. A systematic review of the factors influencing microbial colonization of the preterm infant gut. Gut Microbes 13, 1–33 (2021).

    Google Scholar 

  • DeVeaux, A., Ryou, J., Dantas, G., Warner, B. B. & Tarr, P. I. Microbiome-targeting therapies in the neonatal intensive care unit: safety and efficacy. Gut Microbes 15, 2221758 (2023).

    Google Scholar 

  • Staude, B. et al. The microbiome and preterm birth: a change in paradigm with profound implications for pathophysiologic concepts and novel therapeutic strategies. Biomed. Res. Int. 2018, 7218187 (2018).

    Google Scholar 

  • Bårdsen, T. et al. Impaired lung function in extremely preterm-born adults in their fourth decade of life. Am. J. Respir. Crit. Care Med. 208, 493–495 (2023).

    Google Scholar 

  • Islam, J. Y., Keller, R. L., Aschner, J. L., Hartert, T. V. & Moore, P. E. Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 192, 134–156 (2015).

    Google Scholar 

  • Bårdsen, T. et al. Tracking of lung function from 10 to 35 years after being born extremely preterm or with extremely low birth weight. Thorax 77, 790–798 (2022).

    Google Scholar 

  • Lee, D. M. X., Tan, A. K. S., Ng, Y. P. M. & Amin, Z. Quality of life of patients and caregivers affected by bronchopulmonary dysplasia: a systematic review. Qual. Life Res. 32, 1859–1869 (2023).

    Google Scholar 

  • Horbar, J. D. et al. Trends in mortality and morbidities for infants born 24 to 28 weeks in the US: 1997–2021. Pediatrics 153, e2023064153 (2024).

    Google Scholar 

  • Holzfurtner, L. et al. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia. Mol. Cell Pediatr. 9, 7 (2022).

    Google Scholar 

  • Pammi, M. et al. Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: a systematic review. J.Pediatr. 204, 126-133.e2 (2019).

    Google Scholar 

  • Young, K. C., Del Moral, T., Claure, N., Vanbuskirk, S. & Bancalari, E. The association between early tracheal colonization and bronchopulmonary dysplasia. J. Perinatol. 25, 403–407 (2005).

    Google Scholar 

  • Mourani, P. M., Harris, J. K., Sontag, M. K., Robertson, C. E. & Abman, S. H. Molecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants. PloS one 6, e25959 (2011).

    Google Scholar 

  • Ehrhardt, H. et al. Mode of delivery and incidence of bronchopulmonary dysplasia: results from the population-based EPICE cohort. Neonatology 119, 464–473 (2022).

    Google Scholar 

  • Staude, B. et al. Microbial signatures in amniotic fluid at preterm birth and association with bronchopulmonary dysplasia. Respir. Res. 24, 248 (2023).

    Google Scholar 

  • Lauer, T. et al. Bacterial Colonization within the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants <1000 g. J. Clin. Med. 9, 2240 (2020).

    Google Scholar 

  • Rofael, S. A. D. et al. Airway microbiome in adult survivors of extremely preterm birth: the EPICure study. The European respiratory journal 53 (2019).

  • Dolma, K. et al. Effects of hyperoxia on alveolar and pulmonary vascular development in germ-free mice. Am. J. Physiol. Lung Cell.Mol. physiol. 318, L421–L428 (2020).

    Google Scholar 

  • Dong, Y. et al. Insights into the black box of intra-amniotic infection and its impact on the premature lung: from clinical and preclinical perspectives. Int. J. Mol. Sci. 23, 9792 (2022).

    Google Scholar 

  • Shrestha, A. K. et al. Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice. Am. J. physiol. Lung cell. Mol. Physiol. 316, L229–L244 (2019).

    Google Scholar 

  • Shrestha, A. K. et al. Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs. Am. J. physiol. Lung cell. Mol. Physiol. 319(L981), L996 (2020).

    Google Scholar 

  • Huang, J. et al. Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal. Ed. 104, F128–F136 (2019).

    Google Scholar 

  • Köstlin-Gille, N. et al. Early initiation of antibiotic therapy and short-term outcomes in preterm infants: a single-centre retrospective cohort analysis. Arch. Dis. Child. Fetal Neonatal Ed. 108(623), 630 (2023).

    Google Scholar 

  • Romijn, M. et al. Prediction models for bronchopulmonary dysplasia in preterm infants: a systematic review and meta-analysis. J. Pediatr. 258, 113370 (2023).

    Google Scholar 

  • Christoph J et al. Risikocharakterisierung Intensivmedizinisch Behandelter Früh- Und Neugeborener Und Daten Zur Ist-Situation in Deutschen Neonatologischen Intensivpflegestationen 2013 – Fachliche Erläuterungen Zu Folgender Empfehlung: Praktische Umsetzung Sowie Krankenhaushygienische Und Infektionspräventive Konsequenzen Des Mikrobiellen Kolonisationsscreenings Bei Intensivmedizinisch Behandelten Früh- Und Neugeborenen Ergänzende Empfehlung Der Kommission Für Krankenhaushygiene Und Infektionsprävention (KRINKO) Beim Robert Koch-Institut, Berlin Zur Implementierung Der Empfehlungen Zur Prävention Nosokomialer Infektionen Bei Neonatologischen Intensivpflegepatienten Mit Einem Geburtsgewicht Unter 1.500 g Aus Dem Jahr 2007 Und 2012. 42 (Epidemiologisches Bulletin des Robert Koch-Instituts, Berlin, 2013).

  • Parm, U. et al. Risk factors associated with gut and nasopharyngeal colonization by common gram-negative species and yeasts in neonatal intensive care units patients. Early Hum. Dev. 87, 391–399 (2011).

    Google Scholar 

  • Sgro, M. et al. Early-onset neonatal sepsis: rate and organism pattern between 2003 and 2008. J. Perinatol. : Off. J. California Perinat. Assoc. 31, 794–798 (2011).

    Google Scholar 

  • Kaufman, D. & Fairchild, K. D. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 17, 638–80 (2004).

    Google Scholar 

  • Joubert, I. A., Otto, M., Strunk, T. & Currie, A. J. Look who’s talking: host and pathogen drivers of staphylococcus epidermidis virulence in neonatal sepsis. Int. J. Mol. Sci. 23, 860 (2022).

    Google Scholar 

  • Davis, E. C. et al. Gut microbiome and breast-feeding: Implications for early immune development. J.Allergy Clin. Immunol. 150, 523–534 (2022).

    Google Scholar 

  • Thiess, T. et al. Correlation of early nutritional supply and development of bronchopulmonary dysplasia in preterm infants <1,000 g. Front. Pediatr. 9, 741365 (2021).

    Google Scholar 

  • Voigt, M., Schneider, K. T. M. & Jährig, K. Analyse des Geburtengutes des Jahrgangs 1992 der Bundesrepublik Deutschland [Analysis of a 1992 birth sample in Germany. 1: New percentile values of the body weight of newborn infants]. Geburtshilfe Frauenheilkd 56, 550–558 (1996).

  • Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163, 1723–1729 (2001).

    Google Scholar 

  • Fawke, J. et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am. J. Respire. Crit. Care Med. 182, 237–245 (2010).

    Google Scholar 

  • Walter, S. D., Feinstein, A. R. & Wells, C. K. Coding ordinal independent variables in multiple regression analyses. Am. J. Epidemiol. 125, 319–323 (1987).

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An Introduction with R, Second Edition. (Chapman and Hall/CRC, New York). https://doi.org/10.1201/9781315370279. (2017)

  • Gertheiss, J., Scheipl, F., Lauer, T. & Ehrhardt, H. Statistical inference for ordinal predictors in generalized additive models with application to bronchopulmonary dysplasia. BMC Res. Notes 15, 112 (2022).

    Google Scholar 

  • Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graphical Stat. 15, 651–674 (2006).

    Google Scholar 

  • Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (2023).

  • Rückle, X. et al. Different probiotic strains alter human cord blood monocyte responses. Pediatr. Res. 94, 103–111 (2023).

    Google Scholar 

  • Samara, J. et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe 30, 696-711.e5 (2022).

    Google Scholar 

  • Elazab, N. et al. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics 132, e666-76 (2013).

    Google Scholar 

  • Collins, J. J. P. et al. Repeated intrauterine exposures to inflammatory stimuli attenuated transforming growth factor-\textgreekb signaling in the ovine fetal lung. Neonatology 104, 49–55 (2013).

    Google Scholar 

  • Azizia, M., Lloyd, J., Allen, M., Klein, N. & Peebles, D. Immune status in very preterm neonates. Pediatrics 129, e967-74 (2012).

    Google Scholar 

  • Schmidt, B., Roberts, R., Millar, D. & Kirpalani, H. Evidence-based neonatal drug therapy for prevention of bronchopulmonary dysplasia in very-low-birth-weight infants. Neonatology 93, 284–287 (2008).

    Google Scholar 

  • Brewer, M. R. et al. Determinants of the lung microbiome in intubated premature infants at risk for bronchopulmonary dysplasia. J. Maternal-fetal Neonatal Med.:Official J. Euro. Assoc. Perinat. Med. Federation Asia Oceania Perinat. Soc. Int. Soc. Perinat. Obstetricians 34, 3220–3226 (2021).

    Google Scholar 

  • Strobel, N. A., Adams, C., McAullay, D. R. & Edmond, K. M. 2022 Mother’s own milk compared with formula milk for feeding preterm or low birth weight infants: systematic review and meta-analysis. Pediatrics 150,= (2022).

  • Vatne, A. et al. Early empirical antibiotics and adverse clinical outcomes in infants born very preterm: a population-based cohort. J. Pediatr. 253, 107-114.e5 (2023).

    Google Scholar 

  • Batta, V. K., Rao, S. C. & Patole, S. K. Bifidobacterium infantis as a probiotic in preterm infants: a systematic review and meta-analysis. Pediatr. Res. 94, 1887–1905 (2023).

    Google Scholar 

  • Villamor-Martínez, E. et al. Probiotic supplementation in preterm infants does not affect the risk of bronchopulmonary dysplasia: a meta-analysis of randomized controlled trials. Nutrients 9, 1197 (2017).

    Google Scholar 

  • Beck, L. C. et al. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat. Microbiol. 7, 1525–1535 (2022).

    Google Scholar 

  • Wang, Y. et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: a systematic review and network meta-analysis. JAMA Pediatr. 177, 1158–1167 (2023).

    Google Scholar 

  • Martí, M. et al. Effects of Lactobacillus reuteri supplementation on the gut microbiota in extremely preterm infants in a randomized placebo-controlled trial. Cell Rep. Med. 2, 100206 (2021).

    Google Scholar 

  • Hoshiyar, A. ordPens: an R package for selection, smoothing and principal components analysis for ordinal variables. J. Open Source Softw. 6, 3828 (2021).

    Google Scholar 

  • Continue Reading