N-palmitoyl glycine differentially modulates TRPM4 and TRPC5 and is causally linked to Brugada syndrome

  • Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992).

    Google Scholar 

  • Monasky, M. M. et al. Genotype-phenotype correlation in a family with Brugada syndrome harboring the novel p.Gln371* nonsense variant in the SCN5A gene. Int. J. Mol. Sci. 20, 5522 (2019).

    Google Scholar 

  • Milman, A. et al. Profile of patients with Brugada syndrome presenting with their first documented arrhythmic event: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Heart Rhythm 15, 716–724 (2018).

    Google Scholar 

  • Rimmerman, N. et al. N-palmitoyl glycine, a novel endogenous lipid that acts as a modulator of calcium influx and nitric oxide production in sensory neurons. Mol. Pharm. 74, 213–224 (2008).

    Google Scholar 

  • Bradshaw, H. B., Raboune, S. & Hollis, J. L. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 92, 404–409 (2013).

    Google Scholar 

  • Amarouch, M. Y. & El Hilaly, J. Inherited Cardiac Arrhythmia Syndromes: focus on molecular mechanisms underlying TRPM4 channelopathies. Cardiovasc. Ther. 2020, 6615038 (2020).

    Google Scholar 

  • Alom, F. et al. Possible antagonistic effects of the TRPC4 channel blocker ML204 on M(2) and M(3) muscarinic receptors in mouse ileal and detrusor smooth muscles and atrial myocardium. J. Vet. Med Sci. 80, 1407–1415 (2018).

    Google Scholar 

  • Szentandrássy, N. et al. Effects of rosiglitazone on the configuration of action potentials and ion currents in canine ventricular cells. Br. J. Pharmacol. 163, 499–509 (2011).

    Google Scholar 

  • Pieroni, M. et al. Electroanatomic and pathologic right ventricular outflow tract abnormalities in patients with Brugada Syndrome. J. Am. Coll. Cardiol. 72, 2747–2757 (2018).

    Google Scholar 

  • Bonny, A. et al. C-reactive protein levels in the Brugada syndrome. Cardiol. Res Pract. 2011, 341521 (2011).

    Google Scholar 

  • Li, A., Tung, R., Shivkumar, K. & Bradfield, J. S. Brugada syndrome-Malignant phenotype associated with acute cardiac inflammation? HeartRhythm Case Rep. 3, 384–388 (2017).

    Google Scholar 

  • Gijsbers, K. et al. GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp. Cell Res. 303, 331–342 (2005).

    Google Scholar 

  • Torán, J. L. et al. CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome. Sci. Rep. 7, 12490 (2017).

    Google Scholar 

  • Bahudhanapati, H. et al. Increased expression of CXCL6 in secretory cells drives fibroblast collagen synthesis and is associated with increased mortality in idiopathic pulmonary fibrosis. Eur. Respir. J. 63, 2300088 (2024).

    Google Scholar 

  • Shandelya, S. M., Kuppusamy, P., Herskowitz, A., Weisfeldt, M. L. & Zweier, J. L. Soluble complement receptor type 1 inhibits the complement pathway and prevents contractile failure in the postischemic heart. Evidence that complement activation is required for neutrophil-mediated reperfusion injury. Circulation 88, 2812–2826 (1993).

    Google Scholar 

  • Lazar, H. L. et al. Beneficial effects of complement inhibition with soluble complement receptor 1 (TP10) during cardiac surgery. Circulation 116, I-83–I-88 (2007).

    Google Scholar 

  • Milman, A. et al. Gender differences in patients with Brugada syndrome and arrhythmic events: data from a survey on arrhythmic events in 678 patients. Heart Rhythm 15, 1457–1465 (2018).

    Google Scholar 

  • Li, Q., Wang, P., Ye, K. & Cai, H. Central role of SIAH inhibition in DCC-dependent cardioprotection provoked by netrin-1/NO. Proc. Natl. Acad. Sci. USA 112, 899–904 (2015).

    Google Scholar 

  • Juang, J.-M. J. et al. Validation and disease risk assessment of previously reported genome-wide genetic variants associated with Brugada Syndrome. Circ. Genom. Precis. Med. 13, e002797 (2020).

    Google Scholar 

  • Van Hemelrijck, M., Shanmugalingam, T., Bosco, C., Wulaningsih, W. & Rohrmann, S. The association between circulating IGF1, IGFBP3, and calcium: results from NHANES III. Endocr. Connect. 4, 187–195 (2015).

    Google Scholar 

  • Ezzili, C., Otrubova, K. & Boger, D. L. Fatty acid amide signaling molecules. Bioorg. Med. Chem. Lett. 20, 5959–5968 (2010).

    Google Scholar 

  • Riccio, A. et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 109, 95–104 (2002).

    Google Scholar 

  • Bröker-Lai, J. et al. Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory. EMBO J. 36, 2770–2789 (2017).

    Google Scholar 

  • Du, S. L., Jia, Z. Q., Zhong, J. C. & Wang, L. F. TRPC5 in cardiovascular diseases. Rev. Cardiovasc. Med. 22, 127–135 (2021).

    Google Scholar 

  • Liu, T., Zhao, H., Li, J., Korantzopoulos, P. & Li, G. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiovasc. Ther. 32, 178–183 (2014).

    Google Scholar 

  • Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Google Scholar 

  • Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278, 30813–30820 (2003).

    Google Scholar 

  • Tarifa, C. et al. Spatial distribution of calcium sparks determines their ability to induce afterdepolarizations in human atrial myocytes. JACC Basic Transl. Sci. 8, 1–15 (2023).

    Google Scholar 

  • Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Google Scholar 

  • Vutthikraivit, W. et al. Worldwide prevalence of Brugada Syndrome: a systematic review and meta-analysis. Acta Cardiol. Sin. 34, 267–277 (2018).

    Google Scholar 

  • Barc, J. et al. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat. Genet. 54, 232–239 (2022).

    Google Scholar 

  • Priori, S. G. et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace 15, 1389–1406 (2013).

    Google Scholar 

  • Priori, S. G. et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867 (2015).

    Google Scholar 

  • Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138, e210–e271 (2018).

    Google Scholar 

  • Verweij, N. et al. The genetic makeup of the electrocardiogram. Cell Syst. 11, 229–238.e225 (2020).

    Google Scholar 

  • Nauffal, V. et al. Monogenic and polygenic contributions to QTc prolongation in the population. Circulation 145, 1524–1533 (2022).

    Google Scholar 

  • Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

    Google Scholar 

  • Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).

    Google Scholar 

  • Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Google Scholar 

  • Chen, Y. et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 55, 44–53 (2023).

    Google Scholar 

  • Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Google Scholar 

  • Barton, A. R., Sherman, M. A., Mukamel, R. E. & Loh, P.-R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 53, 1260–1269 (2021).

    Google Scholar 

  • Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    Google Scholar 

  • Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

    Google Scholar 

  • Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A₁(C) levels via glycemic and nonglycemic pathways. Diabetes 59, 3229–3239 (2010).

    Google Scholar 

  • Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Google Scholar 

  • Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    Google Scholar 

  • Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    Google Scholar 

  • Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).

    Google Scholar 

  • Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Google Scholar 

  • Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    Google Scholar 

  • Forgetta, V. et al. Rare genetic variants of large effect influence risk of type 1 diabetes. Diabetes 69, 784–795 (2020).

    Google Scholar 

  • Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941 (2018).

    Google Scholar 

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Google Scholar 

  • Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).

    Google Scholar 

  • Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA 326, 1614–1621 (2021).

    Google Scholar 

  • Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Google Scholar 

  • Tofighi, D. & MacKinnon, D. P. RMediation: an R package for mediation analysis confidence intervals. Behav. Res. Methods 43, 692–700 (2011).

    Google Scholar 

  • Du, L. et al. Dockey: a modern integrated tool for large-scale molecular docking and virtual screening. Brief. Bioinform. 24, bbad047 (2023).

    Google Scholar 

  • Zhang, Q. et al. Increase in CO(2) levels by upregulating late sodium current is proarrhythmic in the heart. Heart Rhythm 16, 1098–1106 (2019).

    Google Scholar 

  • Tomek, J., Nieves-Cintron, M., Navedo, M. F., Ko, C. Y. & Bers, D. M. SparkMaster 2: a new software for automatic analysis of calcium spark data. Circ. Res 133, 450–462 (2023).

    Google Scholar 

  • Tomek, J. et al. Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife 8, e48890 (2019).

    Google Scholar 

  • Xu, H. Code for “N-palmitoyl glycine differentially modulates TRPM4 and TRPC5 and is causally linked to Brugada syndrome”. Zenodo, https://doi.org/10.5281/zenodo.17536545 (2025).

  • Continue Reading