Extended enriched gas in a multi-galaxy merger at redshift 6.7

  • Rieke, M. J. et al. JADES initial data release for the Hubble Ultra Deep Field: revealing the faint infrared sky with deep JWST NIRCam imaging. Astrophys. J. Suppl. Ser. 269, 16 (2023).

    ADS 

    Google Scholar 

  • D’Eugenio, F. et al. JADES Data Release 3: NIRSpec/Microshutter Assembly Spectroscopy for 4000 galaxies in the GOODS fields. Astrophys. J. Suppl. Ser. 277, 4 (2025).

    Google Scholar 

  • Moles, M., Sulentic, J. W. & Márquez, I. The dynamical status of Stephan’s Quintet. Astrophys. J. Lett. 485, L69–L73 (1997).

    ADS 

    Google Scholar 

  • Appleton, P. N. et al. Multiphase gas interactions on subarcsec scales in the shocked intergalactic medium of Stephan’s Quintet with JWST and ALMA. Astrophys. J. 951, 104 (2023).

    ADS 

    Google Scholar 

  • Witstok, J. et al. Inside the bubble: exploring the environments of reionisation-era Lyman-α emitting galaxies with JADES and FRESCO. Astron. Astrophys. 682, A40 (2024).

    Google Scholar 

  • Adamo, A. et al. Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang. Nature 632, 513–516 (2024).

    Google Scholar 

  • Vanzella, E. et al. JWST/NIRCam probes young star clusters in the reionization era Sunrise Arc. Astrophys. J. 945, 53 (2023).

    ADS 

    Google Scholar 

  • Fujimoto, S. et al. Primordial rotating disk composed of ≥15 dense star-forming clumps at cosmic dawn. Nat. Astron. https://doi.org/10.1038/s41550-025-02592-w (2025).

  • Morishita, T. et al. Enhanced subkiloparsec-scale star formation: results from a JWST size analysis of 341 galaxies at 5 < z <14. Astrophys. J. 963, 9 (2024).

    ADS 

    Google Scholar 

  • Chen, Z. et al. JWST/NIRCam observations of stars and H ii regions in z ~ 6–8 galaxies: properties of star-forming complexes on 150 pc scales. Mon. Not. R. Astron. Soc. 518, 5607–5619 (2023).

    ADS 

    Google Scholar 

  • Hainline, K. N. et al. The cosmos in its infancy: JADES galaxy candidates at z > 8 in GOODS-S and GOODS-N. Astrophys. J. 964, 71 (2024).

    ADS 

    Google Scholar 

  • Jones, G. C. et al. GA-NIFS: witnessing the complex assembly of a star-forming system at z = 5.7. Mon. Not. R. Astron. Soc. 540, 3311–3329 (2025).

    Google Scholar 

  • Hashimoto, T. et al. Reionization and the ISM/stellar Origins with JWST and ALMA (RIOJA): the core of the highest-redshift galaxy overdensity at z = 7.88 confirmed by NIRSpec/JWST. Astrophys. J. Lett. 955, L2 (2023).

    ADS 

    Google Scholar 

  • Arribas, S. et al. GA-NIFS: the core of an extremely massive protocluster at the epoch of reionisation probed with JWST/NIRSpec. Astron. Astrophys. 688, A146 (2024).

    Google Scholar 

  • Nakazato, Y., Ceverino, D. & Yoshida, N. A merger-driven scenario for clumpy galaxy formation in the epoch of reionization: physical properties of clumps in the firstlight simulation. Astrophys. J. 975, 238 (2024).

    Google Scholar 

  • Yung, L. Y. A. et al. Semi-analytic forecasts for Roman—the beginning of a new era of deep-wide galaxy surveys. Mon. Not. R. Astron. Soc. 519, 1578–1600 (2023).

    ADS 

    Google Scholar 

  • Cole, J. W. et al. CEERS: increasing scatter along the star-forming main sequence indicates early galaxies form in bursts. Astrophys. J. 979, 193 (2025).

    Google Scholar 

  • Curti, M. et al. JADES: insights into the low-mass end of the mass-metallicity-SFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy. Astron. Astrophys. 684, A75 (2024).

    Google Scholar 

  • Pirie, C. A. et al. The JWST Emission Line Survey (JELS): an untargeted search for Hα emission line galaxies at z > 6 and Their physical properties. Mon. Not. R. Astron. Soc. 541, 1348–1376 (2025).

    Google Scholar 

  • Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).

    ADS 

    Google Scholar 

  • Conroy, C. Modeling the panchromatic spectral energy distributions of galaxies. Annu. Rev. Astron. Astrophys. 51, 393–455 (2013).

    ADS 

    Google Scholar 

  • Papovich, C. et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear—characterizing galaxy stellar populations from rest-frame ~ 1 μm imaging. Astrophys. J. Lett. 949, L18 (2023).

    ADS 

    Google Scholar 

  • Tacchella, S. et al. Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Mon. Not. R. Astron. Soc. 487, 5416–5440 (2019).

    ADS 

    Google Scholar 

  • Carnall, A. C. et al. A massive quiescent galaxy at redshift 4.658. Nature 619, 716–719 (2023).

    ADS 

    Google Scholar 

  • de Graaff, A. et al. Efficient formation of a massive quiescent galaxy at redshift 4.9. Nat. Astron. 9, 280–292 (2025).

    Google Scholar 

  • Carnall, A. C. et al. The JWST EXCELS survey: too much, too young, too fast? Ultra-massive quiescent galaxies at 3 < z < 5. Mon. Not. R. Astron. Soc. 534, 325–348 (2024).

    Google Scholar 

  • Glazebrook, K. et al. A massive galaxy that formed its stars at z ≈ 11. Nature 628, 277–281 (2024).

    ADS 

    Google Scholar 

  • Nanayakkara, T. et al. The formation histories of massive and quiescent galaxies in the 3 < z < 4.5 universe. Astrophys. J. 981, 78 (2025).

    Google Scholar 

  • Turner, C. et al. Age-dating early quiescent galaxies: high star formation efficiency, but consistent with direct, higher-redshift observations. Mon. Not. R. Astron. Soc. 537, 1826–1848 (2025).

    Google Scholar 

  • Mihos, J. C. & Hernquist, L. Gasdynamics and starbursts in major mergers. Astrophys. J. 464, 641 (1996).

    ADS 

    Google Scholar 

  • Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    ADS 

    Google Scholar 

  • Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. Ser. 175, 356–389 (2008).

    ADS 

    Google Scholar 

  • Xie, L. et al. The first quenched galaxies: when and how? Astrophys. J. Lett. 966, L2 (2024).

    ADS 

    Google Scholar 

  • Rieke, G. et al. JWST/NIRCam Slitless Spectroscopy in the JWST/MIRI HUDF Region. JWST Proposal Cycle 3, 4549 (2023).

    Google Scholar 

  • Parlanti, E. et al. GA-NIFS: multiphase analysis of a star-forming galaxy at z ~ 5.5. Astron. Astrophys. 695, A6 (2025).

    Google Scholar 

  • Marshall, M. A. et al. GA-NIFS: black hole and host galaxy properties of two z ~ 6.8 quasars from the NIRSpec IFU. Astron. Astrophys. 678, A191 (2023).

    Google Scholar 

  • Vayner, A. et al. First results from the JWST Early Release Science Program Q3D: ionization cone, clumpy star formation, and shocks in a z = 3 extremely red quasar host. Astrophys. J. 955, 92 (2023).

    ADS 

    Google Scholar 

  • Solimano, M. et al. A hidden active galactic nucleus powering bright [O iii] nebulae in a protocluster at z = 4.5 revealed by JWST. Astron. Astrophys. 693, A70 (2025).

    Google Scholar 

  • Thompson, T. A., Quataert, E., Zhang, D. & Weinberg, D. H. An origin for multiphase gas in galactic winds and haloes. Mon. Not. R. Astron. Soc. 455, 1830–1844 (2016).

    ADS 

    Google Scholar 

  • Peng, Z. et al. Physical origins of outflowing cold clouds in local star-forming dwarf galaxies. Astrophys. J. 981, 171 (2025).

    Google Scholar 

  • Di Cesare, C. et al. Carbon envelopes around merging galaxies at z ~ 4.5. Astron. Astrophys. 690, A255 (2024).

    Google Scholar 

  • Sparre, M. et al. Gas flows in galaxy mergers: supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution. Mon. Not. R. Astron. Soc. 509, 2720–2735 (2022).

    ADS 

    Google Scholar 

  • Moreno, J. et al. Interacting galaxies on FIRE-2: the connection between enhanced star formation and interstellar gas content. Mon. Not. R. Astron. Soc. 485, 1320–1338 (2019).

    ADS 

    Google Scholar 

  • Sinha, M. & Holley-Bockelmann, K. Numerical simulations of hot halo gas in galaxy mergers. Mon. Not. R. Astron. Soc. 397, 190–207 (2009).

    ADS 

    Google Scholar 

  • Cox, T. J. et al. X-ray emission from hot gas in galaxy mergers. Astrophys. J. 643, 692–706 (2006).

    ADS 

    Google Scholar 

  • O’Sullivan, E., Giacintucci, S., Vrtilek, J. M., Raychaudhury, S. & David, L. P. A Chandra X-ray view of Stephan’s Quintet: shocks and star formation. Astrophys. J. 701, 1560–1568 (2009).

    ADS 

    Google Scholar 

  • Allen, R. J. & Hartsuiker, J. W. Radio continuum emission at 21 cm near Stephan’s Quintet. Nature 239, 324–325 (1972).

    ADS 

    Google Scholar 

  • Xu, C. K., Lu, N., Condon, J. J., Dopita, M. & Tuffs, R. J. Physical conditions and star formation activity in the intragroup medium of Stephan’s Quintet. Astrophys. J. 595, 665–684 (2003).

    ADS 

    Google Scholar 

  • Iglesias-Páramo, J., López-Martín, L., Vílchez, J. M., Petropoulou, V. & Sulentic, J. W. New insights on Stephan’s Quintet: exploring the shock in three dimensions. Astron. Astrophys. 539, A127 (2012).

    ADS 

    Google Scholar 

  • Rodríguez-Baras, M., Rosales-Ortega, F. F., Díaz, A. I., Sánchez, S. F. & Pasquali, A. A study of the ionized gas in Stephan’s Quintet from integral field spectroscopy observations. Mon. Not. R. Astron. Soc. 442, 495–508 (2014).

    ADS 

    Google Scholar 

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Google Scholar 

  • Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).

  • Eisenstein, D. J. et al. The JADES Origins Field: a new JWST deep field in the JADES Second NIRCam Data Release. Preprint at https://arxiv.org/abs/2310.12340 (2023).

  • Williams, C. C. et al. JEMS: a deep medium-band imaging survey in the Hubble Ultra Deep Field with JWST NIRCam and NIRISS. Astrophys. J. Suppl. Ser. 268, 64 (2023).

    ADS 

    Google Scholar 

  • Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

    ADS 

    Google Scholar 

  • Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).

    ADS 

    Google Scholar 

  • Wang, X. et al. The Lyman continuum escape fraction of star-forming galaxies at 2.4 z 3.0 from UVCANDELS. Astrophys. J. 980, 74 (2025).

    Google Scholar 

  • Bouwens, R. J. et al. Ultraviolet luminosity functions from 132 z ~7 and z ~8 Lyman-break galaxies in the ultra-deep HUDF09 and wide-area Early Release Science WFC3/IR observations. Astrophys. J. 737, 90 (2011).

    ADS 

    Google Scholar 

  • Oesch, P. A. et al. The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields. Mon. Not. R. Astron. Soc. 525, 2864–2874 (2023).

    ADS 

    Google Scholar 

  • Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Astron. Astrophys. 690, A288 (2024).

    Google Scholar 

  • Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    ADS 

    Google Scholar 

  • Eldridge, J. J. et al. Binary Population and Spectral Synthesis Version 2.1: construction, observational verification, and new results. Publ. Astron. Soc. Aust. 34, e058 (2017).

    ADS 

    Google Scholar 

  • Stanway, E. R. & Eldridge, J. J. Re-evaluating old stellar populations. Mon. Not. R. Astron. Soc. 479, 75–93 (2018).

    ADS 

    Google Scholar 

  • Iyer, K. G. et al. Nonparametric star formation history reconstruction with Gaussian processes. I. Counting major episodes of star formation. Astrophys. J. 879, 116 (2019).

    ADS 

    Google Scholar 

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS 

    Google Scholar 

  • Barbary, K. sep: source extractor as a library. J. Open Source Softw. 1, 58 (2016).

    ADS 

    Google Scholar 

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

    ADS 

    Google Scholar 

  • Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Softw. 8, 5703 (2023).

    ADS 

    Google Scholar 

  • Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1111.4246 (2011).

  • Endsley, R. et al. The star-forming and ionizing properties of dwarf z ~ 6–9 galaxies in JADES: insights on bursty star formation and ionized bubble growth. Mon. Not. R. Astron. Soc. 533, 1111–1142 (2024).

    Google Scholar 

  • Puskás, D. et al. Constraining the major merger history of z ~ 3–9 galaxies using JADES: dominant in situ star formation. Mon. Not. R. Astron. Soc. 540, 2146–2175 (2025).

    Google Scholar 

  • Claeyssens, A. et al. Star formation at the smallest scales: a JWST study of the clump populations in SMACS0723. Mon. Not. R. Astron. Soc. 520, 2180–2203 (2023).

    ADS 

    Google Scholar 

  • Allen, N. et al. Galaxy size and mass build-up in the first 2 Gyr of cosmic history from multi-wavelength JWST NIRCam imaging. Astron. Astrophys. 698, A30 (2025).

    Google Scholar 

  • Shen, L. et al. CEERS: spatially resolved UV and mid-infrared star formation in galaxies at 0.2 <z < 2.5: the picture from the Hubble and James Webb Space telescopes. Astrophys. J. 950, 7 (2023).

    ADS 

    Google Scholar 

  • Sorba, R. & Sawicki, M. Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem. Mon. Not. R. Astron. Soc. 476, 1532–1547 (2018).

    ADS 

    Google Scholar 

  • Shen, L. et al. NGDEEP Epoch 1: spatially resolved Hα observations of disk and bulge growth in star-forming galaxies at z ~ 0.6–2.2 from JWST NIRISS slitless spectroscopy. Astrophys. J. Lett. 963, L49 (2024).

    ADS 

    Google Scholar 

  • Boquien, M. et al. CIGALE: a Python Code Investigating Galaxy Emission. Astron. Astrophys. 622, A103 (2019).

    Google Scholar 

  • Cappellari, M. & Copin, Y. Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations. Mon. Not. R. Astron. Soc. 342, 345–354 (2003).

    ADS 

    Google Scholar 

  • Diehl, S. & Statler, T. S. Adaptive binning of X-ray data with weighted Voronoi tessellations. Mon. Not. R. Astron. Soc. 368, 497–510 (2006).

    ADS 

    Google Scholar 

  • Applebaum, E., Brooks, A. M., Quinn, T. R. & Christensen, C. R. A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 8–21 (2020).

    ADS 

    Google Scholar 

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS 

    Google Scholar 

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS 

    Google Scholar 

  • Inoue, A. K. Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies. Mon. Not. R. Astron. Soc. 415, 2920–2931 (2011).

    ADS 

    Google Scholar 

  • Klypin, A., Yepes, G., Gottlöber, S., Prada, F. & Heß, S. MultiDark simulations: the story of dark matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 457, 4340–4359 (2016).

    ADS 

    Google Scholar 

  • Somerville, R. S., Popping, G. & Trager, S. C. Star formation in semi-analytic galaxy formation models with multiphase gas. Mon. Not. R. Astron. Soc. 453, 4337–4367 (2015).

    ADS 

    Google Scholar 

  • Somerville, R. S. et al. Mock light-cones and theory friendly catalogues for the CANDELS survey. Mon. Not. R. Astron. Soc. 502, 4858–4876 (2021).

    ADS 

    Google Scholar 

  • Yung, L. Y. A., Somerville, R. S., Finkelstein, S. L., Popping, G. & Davé, R. Semi-analytic forecasts for JWST—I. UV luminosity functions at z = 4–10. Mon. Not. R. Astron. Soc. 483, 2983–3006 (2019).

    ADS 

    Google Scholar 

  • Yung, L. Y. A. et al. Semi-analytic forecasts for JWST—VI. Simulated light-cones and galaxy clustering predictions. Mon. Not. R. Astron. Soc. 515, 5416–5436 (2022).

    ADS 

    Google Scholar 

  • Yung, L. Y. A. et al. Semi-analytic forecasts for JWST—II. Physical properties and scaling relations for galaxies at z = 4–10. Mon. Not. R. Astron. Soc. 490, 2855–2879 (2019).

    ADS 

    Google Scholar 

  • Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E. & Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008).

    ADS 

    Google Scholar 

  • Duan, Q. et al. Galaxy mergers in the epoch of reionization II: major merger-triggered star formation and AGN activities at z = 4.5–8.5. Preprint at https://arxiv.org/abs/2411.04944 (2024).

  • Duan, Q. et al. Galaxy mergers in the epoch of reionization I: a JWST study of pair fractions, merger rates, and stellar mass accretion rates at z = 4.5–11.5. Mon. Not. R. Astron. Soc. 540, 774–805 (2025).

    Google Scholar 

  • Gehrels, N. Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336 (1986).

    ADS 

    Google Scholar 

  • Mo, H., van den Bosch, F. & White, S. Galaxy Formation and Evolution (Cambridge Univ. Press, 2010).

  • Chandrasekhar, S. Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophys. J. 97, 255 (1943).

    ADS 
    MathSciNet 

    Google Scholar 

  • Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe. Mon. Not. R. Astron. Soc. 310, 1087–1110 (1999).

    ADS 

    Google Scholar 

  • Jiang, C. Y., Jing, Y. P., Faltenbacher, A., Lin, W. P. & Li, C. A fitting formula for the merger timescale of galaxies in hierarchical clustering. Astrophys. J. 675, 1095–1105 (2008).

    ADS 

    Google Scholar 

  • Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).

  • Continue Reading