Rieke, M. J. et al. JADES initial data release for the Hubble Ultra Deep Field: revealing the faint infrared sky with deep JWST NIRCam imaging. Astrophys. J. Suppl. Ser. 269, 16 (2023).
Google Scholar
D’Eugenio, F. et al. JADES Data Release 3: NIRSpec/Microshutter Assembly Spectroscopy for 4000 galaxies in the GOODS fields. Astrophys. J. Suppl. Ser. 277, 4 (2025).
Moles, M., Sulentic, J. W. & Márquez, I. The dynamical status of Stephan’s Quintet. Astrophys. J. Lett. 485, L69–L73 (1997).
Google Scholar
Appleton, P. N. et al. Multiphase gas interactions on subarcsec scales in the shocked intergalactic medium of Stephan’s Quintet with JWST and ALMA. Astrophys. J. 951, 104 (2023).
Google Scholar
Witstok, J. et al. Inside the bubble: exploring the environments of reionisation-era Lyman-α emitting galaxies with JADES and FRESCO. Astron. Astrophys. 682, A40 (2024).
Adamo, A. et al. Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang. Nature 632, 513–516 (2024).
Vanzella, E. et al. JWST/NIRCam probes young star clusters in the reionization era Sunrise Arc. Astrophys. J. 945, 53 (2023).
Google Scholar
Fujimoto, S. et al. Primordial rotating disk composed of ≥15 dense star-forming clumps at cosmic dawn. Nat. Astron. https://doi.org/10.1038/s41550-025-02592-w (2025).
Morishita, T. et al. Enhanced subkiloparsec-scale star formation: results from a JWST size analysis of 341 galaxies at 5 < z <14. Astrophys. J. 963, 9 (2024).
Google Scholar
Chen, Z. et al. JWST/NIRCam observations of stars and H ii regions in z ~ 6–8 galaxies: properties of star-forming complexes on 150 pc scales. Mon. Not. R. Astron. Soc. 518, 5607–5619 (2023).
Google Scholar
Hainline, K. N. et al. The cosmos in its infancy: JADES galaxy candidates at z > 8 in GOODS-S and GOODS-N. Astrophys. J. 964, 71 (2024).
Google Scholar
Jones, G. C. et al. GA-NIFS: witnessing the complex assembly of a star-forming system at z = 5.7. Mon. Not. R. Astron. Soc. 540, 3311–3329 (2025).
Hashimoto, T. et al. Reionization and the ISM/stellar Origins with JWST and ALMA (RIOJA): the core of the highest-redshift galaxy overdensity at z = 7.88 confirmed by NIRSpec/JWST. Astrophys. J. Lett. 955, L2 (2023).
Google Scholar
Arribas, S. et al. GA-NIFS: the core of an extremely massive protocluster at the epoch of reionisation probed with JWST/NIRSpec. Astron. Astrophys. 688, A146 (2024).
Nakazato, Y., Ceverino, D. & Yoshida, N. A merger-driven scenario for clumpy galaxy formation in the epoch of reionization: physical properties of clumps in the firstlight simulation. Astrophys. J. 975, 238 (2024).
Yung, L. Y. A. et al. Semi-analytic forecasts for Roman—the beginning of a new era of deep-wide galaxy surveys. Mon. Not. R. Astron. Soc. 519, 1578–1600 (2023).
Google Scholar
Cole, J. W. et al. CEERS: increasing scatter along the star-forming main sequence indicates early galaxies form in bursts. Astrophys. J. 979, 193 (2025).
Curti, M. et al. JADES: insights into the low-mass end of the mass-metallicity-SFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy. Astron. Astrophys. 684, A75 (2024).
Pirie, C. A. et al. The JWST Emission Line Survey (JELS): an untargeted search for Hα emission line galaxies at z > 6 and Their physical properties. Mon. Not. R. Astron. Soc. 541, 1348–1376 (2025).
Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).
Google Scholar
Conroy, C. Modeling the panchromatic spectral energy distributions of galaxies. Annu. Rev. Astron. Astrophys. 51, 393–455 (2013).
Google Scholar
Papovich, C. et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear—characterizing galaxy stellar populations from rest-frame ~ 1 μm imaging. Astrophys. J. Lett. 949, L18 (2023).
Google Scholar
Tacchella, S. et al. Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Mon. Not. R. Astron. Soc. 487, 5416–5440 (2019).
Google Scholar
Carnall, A. C. et al. A massive quiescent galaxy at redshift 4.658. Nature 619, 716–719 (2023).
Google Scholar
de Graaff, A. et al. Efficient formation of a massive quiescent galaxy at redshift 4.9. Nat. Astron. 9, 280–292 (2025).
Carnall, A. C. et al. The JWST EXCELS survey: too much, too young, too fast? Ultra-massive quiescent galaxies at 3 < z < 5. Mon. Not. R. Astron. Soc. 534, 325–348 (2024).
Glazebrook, K. et al. A massive galaxy that formed its stars at z ≈ 11. Nature 628, 277–281 (2024).
Google Scholar
Nanayakkara, T. et al. The formation histories of massive and quiescent galaxies in the 3 < z < 4.5 universe. Astrophys. J. 981, 78 (2025).
Turner, C. et al. Age-dating early quiescent galaxies: high star formation efficiency, but consistent with direct, higher-redshift observations. Mon. Not. R. Astron. Soc. 537, 1826–1848 (2025).
Mihos, J. C. & Hernquist, L. Gasdynamics and starbursts in major mergers. Astrophys. J. 464, 641 (1996).
Google Scholar
Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).
Google Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. Ser. 175, 356–389 (2008).
Google Scholar
Xie, L. et al. The first quenched galaxies: when and how? Astrophys. J. Lett. 966, L2 (2024).
Google Scholar
Rieke, G. et al. JWST/NIRCam Slitless Spectroscopy in the JWST/MIRI HUDF Region. JWST Proposal Cycle 3, 4549 (2023).
Parlanti, E. et al. GA-NIFS: multiphase analysis of a star-forming galaxy at z ~ 5.5. Astron. Astrophys. 695, A6 (2025).
Marshall, M. A. et al. GA-NIFS: black hole and host galaxy properties of two z ~ 6.8 quasars from the NIRSpec IFU. Astron. Astrophys. 678, A191 (2023).
Vayner, A. et al. First results from the JWST Early Release Science Program Q3D: ionization cone, clumpy star formation, and shocks in a z = 3 extremely red quasar host. Astrophys. J. 955, 92 (2023).
Google Scholar
Solimano, M. et al. A hidden active galactic nucleus powering bright [O iii] nebulae in a protocluster at z = 4.5 revealed by JWST. Astron. Astrophys. 693, A70 (2025).
Thompson, T. A., Quataert, E., Zhang, D. & Weinberg, D. H. An origin for multiphase gas in galactic winds and haloes. Mon. Not. R. Astron. Soc. 455, 1830–1844 (2016).
Google Scholar
Peng, Z. et al. Physical origins of outflowing cold clouds in local star-forming dwarf galaxies. Astrophys. J. 981, 171 (2025).
Di Cesare, C. et al. Carbon envelopes around merging galaxies at z ~ 4.5. Astron. Astrophys. 690, A255 (2024).
Sparre, M. et al. Gas flows in galaxy mergers: supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution. Mon. Not. R. Astron. Soc. 509, 2720–2735 (2022).
Google Scholar
Moreno, J. et al. Interacting galaxies on FIRE-2: the connection between enhanced star formation and interstellar gas content. Mon. Not. R. Astron. Soc. 485, 1320–1338 (2019).
Google Scholar
Sinha, M. & Holley-Bockelmann, K. Numerical simulations of hot halo gas in galaxy mergers. Mon. Not. R. Astron. Soc. 397, 190–207 (2009).
Google Scholar
Cox, T. J. et al. X-ray emission from hot gas in galaxy mergers. Astrophys. J. 643, 692–706 (2006).
Google Scholar
O’Sullivan, E., Giacintucci, S., Vrtilek, J. M., Raychaudhury, S. & David, L. P. A Chandra X-ray view of Stephan’s Quintet: shocks and star formation. Astrophys. J. 701, 1560–1568 (2009).
Google Scholar
Allen, R. J. & Hartsuiker, J. W. Radio continuum emission at 21 cm near Stephan’s Quintet. Nature 239, 324–325 (1972).
Google Scholar
Xu, C. K., Lu, N., Condon, J. J., Dopita, M. & Tuffs, R. J. Physical conditions and star formation activity in the intragroup medium of Stephan’s Quintet. Astrophys. J. 595, 665–684 (2003).
Google Scholar
Iglesias-Páramo, J., López-Martín, L., Vílchez, J. M., Petropoulou, V. & Sulentic, J. W. New insights on Stephan’s Quintet: exploring the shock in three dimensions. Astron. Astrophys. 539, A127 (2012).
Google Scholar
Rodríguez-Baras, M., Rosales-Ortega, F. F., Díaz, A. I., Sánchez, S. F. & Pasquali, A. A study of the ionized gas in Stephan’s Quintet from integral field spectroscopy observations. Mon. Not. R. Astron. Soc. 442, 495–508 (2014).
Google Scholar
Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).
Eisenstein, D. J. et al. The JADES Origins Field: a new JWST deep field in the JADES Second NIRCam Data Release. Preprint at https://arxiv.org/abs/2310.12340 (2023).
Williams, C. C. et al. JEMS: a deep medium-band imaging survey in the Hubble Ultra Deep Field with JWST NIRCam and NIRISS. Astrophys. J. Suppl. Ser. 268, 64 (2023).
Google Scholar
Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).
Google Scholar
Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).
Google Scholar
Wang, X. et al. The Lyman continuum escape fraction of star-forming galaxies at 2.4 ≲ z ≲ 3.0 from UVCANDELS. Astrophys. J. 980, 74 (2025).
Bouwens, R. J. et al. Ultraviolet luminosity functions from 132 z ~7 and z ~8 Lyman-break galaxies in the ultra-deep HUDF09 and wide-area Early Release Science WFC3/IR observations. Astrophys. J. 737, 90 (2011).
Google Scholar
Oesch, P. A. et al. The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields. Mon. Not. R. Astron. Soc. 525, 2864–2874 (2023).
Google Scholar
Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Astron. Astrophys. 690, A288 (2024).
Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).
Google Scholar
Eldridge, J. J. et al. Binary Population and Spectral Synthesis Version 2.1: construction, observational verification, and new results. Publ. Astron. Soc. Aust. 34, e058 (2017).
Google Scholar
Stanway, E. R. & Eldridge, J. J. Re-evaluating old stellar populations. Mon. Not. R. Astron. Soc. 479, 75–93 (2018).
Google Scholar
Iyer, K. G. et al. Nonparametric star formation history reconstruction with Gaussian processes. I. Counting major episodes of star formation. Astrophys. J. 879, 116 (2019).
Google Scholar
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Google Scholar
Barbary, K. sep: source extractor as a library. J. Open Source Softw. 1, 58 (2016).
Google Scholar
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).
Google Scholar
Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Softw. 8, 5703 (2023).
Google Scholar
Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1111.4246 (2011).
Endsley, R. et al. The star-forming and ionizing properties of dwarf z ~ 6–9 galaxies in JADES: insights on bursty star formation and ionized bubble growth. Mon. Not. R. Astron. Soc. 533, 1111–1142 (2024).
Puskás, D. et al. Constraining the major merger history of z ~ 3–9 galaxies using JADES: dominant in situ star formation. Mon. Not. R. Astron. Soc. 540, 2146–2175 (2025).
Claeyssens, A. et al. Star formation at the smallest scales: a JWST study of the clump populations in SMACS0723. Mon. Not. R. Astron. Soc. 520, 2180–2203 (2023).
Google Scholar
Allen, N. et al. Galaxy size and mass build-up in the first 2 Gyr of cosmic history from multi-wavelength JWST NIRCam imaging. Astron. Astrophys. 698, A30 (2025).
Shen, L. et al. CEERS: spatially resolved UV and mid-infrared star formation in galaxies at 0.2 <z < 2.5: the picture from the Hubble and James Webb Space telescopes. Astrophys. J. 950, 7 (2023).
Google Scholar
Sorba, R. & Sawicki, M. Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem. Mon. Not. R. Astron. Soc. 476, 1532–1547 (2018).
Google Scholar
Shen, L. et al. NGDEEP Epoch 1: spatially resolved Hα observations of disk and bulge growth in star-forming galaxies at z ~ 0.6–2.2 from JWST NIRISS slitless spectroscopy. Astrophys. J. Lett. 963, L49 (2024).
Google Scholar
Boquien, M. et al. CIGALE: a Python Code Investigating Galaxy Emission. Astron. Astrophys. 622, A103 (2019).
Cappellari, M. & Copin, Y. Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations. Mon. Not. R. Astron. Soc. 342, 345–354 (2003).
Google Scholar
Diehl, S. & Statler, T. S. Adaptive binning of X-ray data with weighted Voronoi tessellations. Mon. Not. R. Astron. Soc. 368, 497–510 (2006).
Google Scholar
Applebaum, E., Brooks, A. M., Quinn, T. R. & Christensen, C. R. A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 8–21 (2020).
Google Scholar
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).
Google Scholar
Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).
Google Scholar
Inoue, A. K. Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies. Mon. Not. R. Astron. Soc. 415, 2920–2931 (2011).
Google Scholar
Klypin, A., Yepes, G., Gottlöber, S., Prada, F. & Heß, S. MultiDark simulations: the story of dark matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 457, 4340–4359 (2016).
Google Scholar
Somerville, R. S., Popping, G. & Trager, S. C. Star formation in semi-analytic galaxy formation models with multiphase gas. Mon. Not. R. Astron. Soc. 453, 4337–4367 (2015).
Google Scholar
Somerville, R. S. et al. Mock light-cones and theory friendly catalogues for the CANDELS survey. Mon. Not. R. Astron. Soc. 502, 4858–4876 (2021).
Google Scholar
Yung, L. Y. A., Somerville, R. S., Finkelstein, S. L., Popping, G. & Davé, R. Semi-analytic forecasts for JWST—I. UV luminosity functions at z = 4–10. Mon. Not. R. Astron. Soc. 483, 2983–3006 (2019).
Google Scholar
Yung, L. Y. A. et al. Semi-analytic forecasts for JWST—VI. Simulated light-cones and galaxy clustering predictions. Mon. Not. R. Astron. Soc. 515, 5416–5436 (2022).
Google Scholar
Yung, L. Y. A. et al. Semi-analytic forecasts for JWST—II. Physical properties and scaling relations for galaxies at z = 4–10. Mon. Not. R. Astron. Soc. 490, 2855–2879 (2019).
Google Scholar
Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E. & Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008).
Google Scholar
Duan, Q. et al. Galaxy mergers in the epoch of reionization II: major merger-triggered star formation and AGN activities at z = 4.5–8.5. Preprint at https://arxiv.org/abs/2411.04944 (2024).
Duan, Q. et al. Galaxy mergers in the epoch of reionization I: a JWST study of pair fractions, merger rates, and stellar mass accretion rates at z = 4.5–11.5. Mon. Not. R. Astron. Soc. 540, 774–805 (2025).
Gehrels, N. Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336 (1986).
Google Scholar
Mo, H., van den Bosch, F. & White, S. Galaxy Formation and Evolution (Cambridge Univ. Press, 2010).
Chandrasekhar, S. Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophys. J. 97, 255 (1943).
Google Scholar
Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe. Mon. Not. R. Astron. Soc. 310, 1087–1110 (1999).
Google Scholar
Jiang, C. Y., Jing, Y. P., Faltenbacher, A., Lin, W. P. & Li, C. A fitting formula for the merger timescale of galaxies in hierarchical clustering. Astrophys. J. 675, 1095–1105 (2008).
Google Scholar
Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).