Engelen, T., Solcà, M. & Tallon-Baudry, C. Interoceptive rhythms in the brain. Nat. Neurosci. 26, 1670–1684 (2023).
Google Scholar
Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).
Google Scholar
Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).
Candia-Rivera, D., Catrambone, V., Thayer, J. F., Gentili, C. & Valenza, G. Cardiac sympathetic-vagal activity initiates a functional brain–body response to emotional arousal. Proc. Natl. Acad. Sci. USA 119, e2119599119 (2022).
Google Scholar
Mather, M. & Thayer, J. F. How heart rate variability affects emotion regulation brain networks. Curr. Opin. Behav. Sci. 19, 98–104 (2018).
Google Scholar
Margolis, K. G., Cryan, J. F. & Mayer, E. A. The microbiota-gut-brain axis: from motility to mood. Gastroenterology 160, 1486–1501 (2021).
Google Scholar
Silvani, A., Calandra-Buonaura, G., Dampney, R. A. & Cortelli, P. Brain–heart interactions: physiology and clinical implications. Philos. Trans. R. Soc. A 374, 20150181 (2016).
Varga, S. & Heck, D. H. Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and embodied cognition. Conscious. Cogn. 56, 77–90 (2017).
Google Scholar
Faes, L., Nollo, G., Jurysta, F. & Marinazzo, D. Information dynamics of brain–heart physiological networks during sleep. N. J. Phys. 16, 105005 (2014).
Catrambone, V., Talebi, A., Barbieri, R. & Valenza, G. Time-resolved brain-to-heart probabilistic information transfer estimation using inhomogeneous point-process models. IEEE Trans. Biomed. Eng. 68, 3366–3374 (2021).
Google Scholar
Park, H.-D. & Blanke, O. Heartbeat-evoked cortical responses: Underlying mechanisms, functional roles, and methodological considerations. Neuroimage 197, 502–511 (2019).
Google Scholar
Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S. & Ivanov, P. C. Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 9 (2012).
de Zambotti, M., Trinder, J., Silvani, A., Colrain, I. M. & Baker, F. C. Dynamic coupling between the central and autonomic nervous systems during sleep: a review. Neurosci. Biobehav. Rev. 90, 84–103 (2018).
Google Scholar
Yao, Y. et al. Cardiovascular baroreflex circuit moonlights in sleep control. Neuron 110, 3986–3999. e3986 (2022).
Google Scholar
Narkiewicz, K. & Somers, V. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol. Scand. 177, 385–390 (2003).
Google Scholar
Kanki, M. et al. Poor sleep and shift work associate with increased blood pressure and inflammation in UK Biobank participants. Nat. Commun. 14, 7096 (2023).
Google Scholar
Koch, E. Die irradiation der pressoreceptorischen kreislaufreflexe. Klin. Woche. 11, 225–227 (1932).
Bonvallet, M., Dell, P. & Hiebel, G. Tonus sympathique et activité électrique corticale. Electroencephalogr. Clin. Neurophysiol. 6, 119–144 (1954).
Google Scholar
Suarez-Roca, H., Mamoun, N., Sigurdson, M. I. & Maixner, W. Baroreceptor modulation of the cardiovascular system, pain, consciousness, and cognition. Compr. Physiol. 11, 1373 (2021).
Google Scholar
Laborde, S., Mosley, E. & Mertgen, A. A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon 4, e01002 (2018).
Rosenbaum, M. & Race, D. Frequency-response characteristics of vascular resistance vessels. Am. J. Physiol. 215, 1397–1402 (1968).
Google Scholar
Deegan, P. & McNicholas, W. Pathophysiology of obstructive sleep apnoea. Eur. Resp. J. 8, 1161–1178 (1995).
Eckberg, D. L. Topical review: the human respiratory gate. J. Physiol. 548, 339–352 (2003).
Google Scholar
Ako, M. et al. Correlation between electroencephalography and heart rate variability during sleep. Psychiatry Clin. Neurosci. 57, 59–65 (2003).
Google Scholar
Jurysta, F. et al. A study of the dynamic interactions between sleep EEG and heart rate variability in healthy young men. Clin. Neurophysiol. 114, 2146–2155 (2003).
Google Scholar
Faes, L., Kugiumtzis, D., Nollo, G., Jurysta, F. & Marinazzo, D. Estimating the decomposition of predictive information in multivariate systems. Phys. Rev. E 91, 032904 (2015).
Orjuela-Cañón, A. D., Cerquera, A., Freund, J. A., Juliá-Serdá, G. & Ravelo-García, A. G. Sleep apnea: tracking effects of a first session of CPAP therapy by means of Granger causality. Comput. Methods Prog. Biomed. 187, 105235 (2020).
Valenza, G. et al. Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A 374, 20150176 (2016).
Catrambone, V., Greco, A., Scilingo, E. P. & Valenza, G. Functional linear and nonlinear brain–heart interplay during emotional video elicitation: A maximum information coefficient study. Entropy 21, 892 (2019).
Google Scholar
Schulz, S., Haueisen, J., Bär, K.-J. & Voss, A. Altered causal coupling pathways within the central-autonomic-network in patients suffering from schizophrenia. Entropy 21, 733 (2019).
Google Scholar
Schiecke, K. et al. Brain–heart interactions considering complex physiological data: processing schemes for time-variant, frequency-dependent, topographical and statistical examination of directed interactions by convergent cross mapping. Physiol. Meas. 40, 114001 (2019).
Google Scholar
Yeh, C.-H., Lo, M.-T. & Hu, K. Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals. Phys. A 454, 143–150 (2016).
Pittman-Polletta, B., Hsieh, W.-H., Kaur, S., Lo, M.-T. & Hu, K. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J. Neurosci. Methods 226, 15–32 (2014).
Google Scholar
Catrambone, V. & Valenza, G. Microstates of the cortical brain-heart axis. Hum. Brain Mapp. 44, 5846–5857 (2023).
Google Scholar
Dragomiretskiy, K. & Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 62, 531–544 (2013).
Li, H., Kwong, S., Yang, L., Huang, D. & Xiao, D. Hilbert-Huang transform for analysis of heart rate variability in cardiac health. IEEE-ACM Trans. Comput. Biol. Bioinform. 8, 1557–1567 (2011).
Google Scholar
Orini, M., Bailón, R., Mainardi, L. T., Laguna, P. & Flandrin, P. Characterization of dynamic interactions between cardiovascular signals by time-frequency coherence. IEEE Trans. Biomed. Eng. 59, 663–673 (2011).
Google Scholar
Candia-Rivera, D., de Vico Fallani, F. & Chavez, M. Robust and time-resolved estimation of cardiac sympathetic and parasympathetic indices. R. Soc. Open Sci. 12, 240750 (2025).
Google Scholar
Tort, A. B., Komorowski, R., Eichenbaum, H. & Kopell, N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210 (2010).
Google Scholar
Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).
Google Scholar
Yeh, C.-H. et al. Cross-frequency coupling and intelligent neuromodulation. Cyborg. Bionic. Syst. 4, 0034 (2023).
Google Scholar
Tort, A. B. et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. USA 105, 20517–20522 (2008).
Google Scholar
Takeuchi, S. et al. Gamma oscillations and their cross-frequency coupling in the primate hippocampus during sleep. Sleep 38, 1085–1091 (2015).
Google Scholar
Muthuraman, M. et al. Cross-frequency coupling between gamma oscillations and deep brain stimulation frequency in Parkinson’s disease. Brain 143, 3393–3407 (2020).
Google Scholar
Motoi, H. et al. Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery. Epilepsia 59, 1954–1965 (2018).
Google Scholar
Hyafil, A., Giraud, A.-L., Fontolan, L. & Gutkin, B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 38, 725–740 (2015).
Google Scholar
Fabus, M. S., Sleigh, J. W. & Warnaby, C. E. Effect of propofol on heart rate and its coupling to cortical slow waves in humans. Anesthesiology 140, 62 (2024).
Google Scholar
Lechinger, J., Heib, D. P. J., Gruber, W., Schabus, M. & Klimesch, W. Heartbeat-related EEG amplitude and phase modulations from wakefulness to deep sleep: interactions with sleep spindles and slow oscillations. Psychophysiology 52, 1441–1450 (2015).
Google Scholar
Faes, L., Marinazzo, D., Jurysta, F. & Nollo, G. Linear and non-linear brain–heart and brain–brain interactions during sleep. Physiol. Meas. 36, 683 (2015).
Google Scholar
Dumont, M. et al. Interdependency between heart rate variability and sleep EEG: linear/non-linear?. Clin. Neurophysiol. 115, 2031–2040 (2004).
Google Scholar
Candia-Rivera, D., Faes, L., de Vico Fallani, F. & Chavez, M. Measures and Models of Brain-Heart Interactions. IEEE Rev. Biomed. Eng. 14, 1–17 (2025).
Zhang, C., Yeh, C.-H. & Shi, W. Variational phase-amplitude coupling characterizes signatures of anterior cortex under emotional processing. IEEE J. Biomed. Health Inform. 27, 1935–1945 (2023).
Google Scholar
Dang-Vu, T. T. et al. Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. USA 105, 15160–15165 (2008).
Google Scholar
Svanborg, E. & Guilleminault, C. EEG frequency changes during sleep apneas. Sleep 19, 248–254 (1996).
Google Scholar
Simon, C. W. & Emmons, W. H. EEG, consciousness, and sleep. Science 124, 1066–1069 (1956).
Google Scholar
Hermann, B. et al. Aberrant brain–heart coupling is associated with the severity of post cardiac arrest brain injury. Ann. Clin. Transal. Neurol. 11, 866–882 (2024).
Stein, P. K. & Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep. Med. Rev. 16, 47–66 (2012).
Google Scholar
Lyu, J., Shi, W., Zhang, C. & Yeh, C.-H. A novel sleep staging method based on EEG and ECG multimodal features combination. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4073–4084 (2023).
Google Scholar
Kong, S. D. et al. Heart rate variability during slow wave sleep is linked to functional connectivity in the central autonomic network. Brain Commun. 5, fcad129 (2023).
Google Scholar
Zoccoli, G. & Amici, R. Sleep and autonomic nervous system. Curr. Opin. Physiol. 15, 128–133 (2020).
Reyes del Paso, G. A., Langewitz, W., Mulder, L. J., Van Roon, A. & Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology 50, 477–487 (2013).
Google Scholar
Lee, H., Park, J., Kim, H. & Lee, K.-J. New rule-based algorithm for real-time detecting sleep apnea and hypopnea events using a nasal pressure signal. J. Med. Syst. 40, 1–12 (2016).
Rolón, R. E. et al. Automatic scoring of apnea and hypopnea events using blood oxygen saturation signals. Biomed. Signal Process. 62, 102062 (2020).
Eckert, D. J. & Malhotra, A. Pathophysiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5, 144–153 (2008).
Google Scholar
De Chazal, P., Heneghan, C. & McNicholas, W. T. Multimodal detection of sleep apnoea using electrocardiogram and oximetry signals. Philos. Trans. R. Soc. A 367, 369–389 (2009).
Berry, R. B. et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J. Clin. Sleep. Med. 8, 597–619 (2012).
Google Scholar
Dingli, K. et al. Spectral oscillations of RR intervals in sleep apnoea/hypopnoea syndrome patients. Eur. Resp. J. 22, 943–950 (2003).
Dissanayake, H. U. et al. Association between autonomic function and obstructive sleep apnea: a systematic review. Sleep. Med. Rev. 57, 101470 (2021).
Google Scholar
Li, X. et al. Interaction effect of obstructive sleep apnea and periodic limb movements during sleep on heart rate variability. J. Sleep. Res. 28, e12861 (2019).
Google Scholar
Candia-Rivera, D. & Cnrs, M. C. In 13th Conference of the European Study Group on Cardiovascular Oscillations https://hal.science/hal-04813786v1/file/2024205034.pdf (ESGCO, 2024).
Faes, L. et al. Predictability decomposition detects the impairment of brain–heart dynamical networks during sleep disorders and their recovery with treatment. Philos. Trans. R. Soc. A 374, 20150177 (2016).
Schreiner, T., Petzka, M., Staudigl, T. & Staresina, B. P. Respiration modulates sleep oscillations and memory reactivation in humans. Nat. Commun. 14, 8351 (2023).
Google Scholar
Tort, A. B., Hammer, M., Zhang, J., Brankačk, J. & Draguhn, A. Temporal relations between cortical network oscillations and breathing frequency during REM sleep. J. Neurosci. 41, 5229–5242 (2021).
Google Scholar
Tang, X. & Dworkin, B. R. Baroreflexes of the rat. VI. Sleep and responses to aortic nerve stimulation in the dmNTS. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1428–R1434 (2010).
Google Scholar
Conway, J., Boon, N., Jones, J. V. & Sleight, P. Involvement of the baroreceptor reflexes in the changes in blood pressure with sleep and mental arousal. Hypertension 5, 746–748 (1983).
Google Scholar
Batini, C., Moruzzi, G., Palestini, M., Rossi, G. F. & Zanchetti, A. Persistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science 128, 30–32 (1958).
Google Scholar
Laguzzi, R., Reis, D. J. & Talman, W. T. Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Res. 304, 321–328 (1984).
Google Scholar
Magnes, J., Moruzzi, G. & Pompeiano, O. Synchronization of the EEG produced by low-frequency electrical stimulation of the region of the solitary tract. Arch. Ital. Biol. 99, 33–67 (1961).
Wang, Y., Shi, W. & Yeh, C.-H. A novel measure of cardiopulmonary coupling during sleep based on the synchrosqueezing transform algorithm. IEEE J. Biomed. Health Inform. 27, 1790–1800 (2023).
Google Scholar
McAllen, R. & Spyer, K. The baroreceptor input to cardiac vagal motoneurones. J. Physiol. 282, 365 (1978).
Google Scholar
Gilbey, M., Jordan, D., Richter, D. & Spyer, K. Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J. Physiol. 356, 65–78 (1984).
Google Scholar
Moberly, A. H. et al. Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat. Commun. 9, 1528 (2018).
Google Scholar
Bagur, S. et al. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12, 2605 (2021).
Google Scholar
Khalighi, S., Sousa, T., Santos, J. M. & Nunes, U. ISRUC-Sleep: a comprehensive public dataset for sleep researchers. Comput. Methods Prog. Biomed. 124, 180–192 (2016).
O’reilly, C., Gosselin, N., Carrier, J. & Nielsen, T. Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research. J. Sleep. Res. 23, 628–635 (2014).
Google Scholar
Berry, R. B. et al. AASM scoring manual updates for 2017 (version 2.4). J. Clin. Sleep. Med. 13, 665–666 (2017).
Google Scholar
Pan, J. & Tompkins, W. J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985).
McSharry, P. E., Clifford, G. D., Tarassenko, L. & Smith, L. A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50, 289–294 (2003).
Google Scholar
Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Data Sci. Adapt. 1, 1–41 (2009).
Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 903–995 (1998).
Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. In Proc. 11th International Conference on Human Factors in Computing Systems. http://faculty.washington.edu/wobbrock/pubs/chi-11.06.pdf (SIGCHI, 2011).
Feys, J. Nonparametric tests for the interaction in two-way factorial designs using R. R. J. 8, 367–378 (2016).