Dynamic brain-heart interaction in sleep characterized by variational phase-amplitude coupling framework

  • Engelen, T., Solcà, M. & Tallon-Baudry, C. Interoceptive rhythms in the brain. Nat. Neurosci. 26, 1670–1684 (2023).

    PubMed 

    Google Scholar 

  • Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    PubMed 

    Google Scholar 

  • Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

  • Candia-Rivera, D., Catrambone, V., Thayer, J. F., Gentili, C. & Valenza, G. Cardiac sympathetic-vagal activity initiates a functional brain–body response to emotional arousal. Proc. Natl. Acad. Sci. USA 119, e2119599119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mather, M. & Thayer, J. F. How heart rate variability affects emotion regulation brain networks. Curr. Opin. Behav. Sci. 19, 98–104 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Margolis, K. G., Cryan, J. F. & Mayer, E. A. The microbiota-gut-brain axis: from motility to mood. Gastroenterology 160, 1486–1501 (2021).

    PubMed 

    Google Scholar 

  • Silvani, A., Calandra-Buonaura, G., Dampney, R. A. & Cortelli, P. Brain–heart interactions: physiology and clinical implications. Philos. Trans. R. Soc. A 374, 20150181 (2016).

    Google Scholar 

  • Varga, S. & Heck, D. H. Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and embodied cognition. Conscious. Cogn. 56, 77–90 (2017).

    PubMed 

    Google Scholar 

  • Faes, L., Nollo, G., Jurysta, F. & Marinazzo, D. Information dynamics of brain–heart physiological networks during sleep. N. J. Phys. 16, 105005 (2014).

    Google Scholar 

  • Catrambone, V., Talebi, A., Barbieri, R. & Valenza, G. Time-resolved brain-to-heart probabilistic information transfer estimation using inhomogeneous point-process models. IEEE Trans. Biomed. Eng. 68, 3366–3374 (2021).

    PubMed 

    Google Scholar 

  • Park, H.-D. & Blanke, O. Heartbeat-evoked cortical responses: Underlying mechanisms, functional roles, and methodological considerations. Neuroimage 197, 502–511 (2019).

    PubMed 

    Google Scholar 

  • Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S. & Ivanov, P. C. Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 9 (2012).

    Google Scholar 

  • de Zambotti, M., Trinder, J., Silvani, A., Colrain, I. M. & Baker, F. C. Dynamic coupling between the central and autonomic nervous systems during sleep: a review. Neurosci. Biobehav. Rev. 90, 84–103 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, Y. et al. Cardiovascular baroreflex circuit moonlights in sleep control. Neuron 110, 3986–3999. e3986 (2022).

    PubMed 

    Google Scholar 

  • Narkiewicz, K. & Somers, V. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol. Scand. 177, 385–390 (2003).

    PubMed 

    Google Scholar 

  • Kanki, M. et al. Poor sleep and shift work associate with increased blood pressure and inflammation in UK Biobank participants. Nat. Commun. 14, 7096 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koch, E. Die irradiation der pressoreceptorischen kreislaufreflexe. Klin. Woche. 11, 225–227 (1932).

    Google Scholar 

  • Bonvallet, M., Dell, P. & Hiebel, G. Tonus sympathique et activité électrique corticale. Electroencephalogr. Clin. Neurophysiol. 6, 119–144 (1954).

    PubMed 

    Google Scholar 

  • Suarez-Roca, H., Mamoun, N., Sigurdson, M. I. & Maixner, W. Baroreceptor modulation of the cardiovascular system, pain, consciousness, and cognition. Compr. Physiol. 11, 1373 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Laborde, S., Mosley, E. & Mertgen, A. A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon 4, e01002 (2018).

  • Rosenbaum, M. & Race, D. Frequency-response characteristics of vascular resistance vessels. Am. J. Physiol. 215, 1397–1402 (1968).

    PubMed 

    Google Scholar 

  • Deegan, P. & McNicholas, W. Pathophysiology of obstructive sleep apnoea. Eur. Resp. J. 8, 1161–1178 (1995).

    Google Scholar 

  • Eckberg, D. L. Topical review: the human respiratory gate. J. Physiol. 548, 339–352 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ako, M. et al. Correlation between electroencephalography and heart rate variability during sleep. Psychiatry Clin. Neurosci. 57, 59–65 (2003).

    PubMed 

    Google Scholar 

  • Jurysta, F. et al. A study of the dynamic interactions between sleep EEG and heart rate variability in healthy young men. Clin. Neurophysiol. 114, 2146–2155 (2003).

    PubMed 

    Google Scholar 

  • Faes, L., Kugiumtzis, D., Nollo, G., Jurysta, F. & Marinazzo, D. Estimating the decomposition of predictive information in multivariate systems. Phys. Rev. E 91, 032904 (2015).

    Google Scholar 

  • Orjuela-Cañón, A. D., Cerquera, A., Freund, J. A., Juliá-Serdá, G. & Ravelo-García, A. G. Sleep apnea: tracking effects of a first session of CPAP therapy by means of Granger causality. Comput. Methods Prog. Biomed. 187, 105235 (2020).

    Google Scholar 

  • Valenza, G. et al. Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A 374, 20150176 (2016).

    Google Scholar 

  • Catrambone, V., Greco, A., Scilingo, E. P. & Valenza, G. Functional linear and nonlinear brain–heart interplay during emotional video elicitation: A maximum information coefficient study. Entropy 21, 892 (2019).

    PubMed Central 

    Google Scholar 

  • Schulz, S., Haueisen, J., Bär, K.-J. & Voss, A. Altered causal coupling pathways within the central-autonomic-network in patients suffering from schizophrenia. Entropy 21, 733 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiecke, K. et al. Brain–heart interactions considering complex physiological data: processing schemes for time-variant, frequency-dependent, topographical and statistical examination of directed interactions by convergent cross mapping. Physiol. Meas. 40, 114001 (2019).

    PubMed 

    Google Scholar 

  • Yeh, C.-H., Lo, M.-T. & Hu, K. Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals. Phys. A 454, 143–150 (2016).

    Google Scholar 

  • Pittman-Polletta, B., Hsieh, W.-H., Kaur, S., Lo, M.-T. & Hu, K. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J. Neurosci. Methods 226, 15–32 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Catrambone, V. & Valenza, G. Microstates of the cortical brain-heart axis. Hum. Brain Mapp. 44, 5846–5857 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dragomiretskiy, K. & Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 62, 531–544 (2013).

    Google Scholar 

  • Li, H., Kwong, S., Yang, L., Huang, D. & Xiao, D. Hilbert-Huang transform for analysis of heart rate variability in cardiac health. IEEE-ACM Trans. Comput. Biol. Bioinform. 8, 1557–1567 (2011).

    PubMed 

    Google Scholar 

  • Orini, M., Bailón, R., Mainardi, L. T., Laguna, P. & Flandrin, P. Characterization of dynamic interactions between cardiovascular signals by time-frequency coherence. IEEE Trans. Biomed. Eng. 59, 663–673 (2011).

    PubMed 

    Google Scholar 

  • Candia-Rivera, D., de Vico Fallani, F. & Chavez, M. Robust and time-resolved estimation of cardiac sympathetic and parasympathetic indices. R. Soc. Open Sci. 12, 240750 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tort, A. B., Komorowski, R., Eichenbaum, H. & Kopell, N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).

    PubMed 

    Google Scholar 

  • Yeh, C.-H. et al. Cross-frequency coupling and intelligent neuromodulation. Cyborg. Bionic. Syst. 4, 0034 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tort, A. B. et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. USA 105, 20517–20522 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Takeuchi, S. et al. Gamma oscillations and their cross-frequency coupling in the primate hippocampus during sleep. Sleep 38, 1085–1091 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muthuraman, M. et al. Cross-frequency coupling between gamma oscillations and deep brain stimulation frequency in Parkinson’s disease. Brain 143, 3393–3407 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Motoi, H. et al. Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery. Epilepsia 59, 1954–1965 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyafil, A., Giraud, A.-L., Fontolan, L. & Gutkin, B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 38, 725–740 (2015).

    PubMed 

    Google Scholar 

  • Fabus, M. S., Sleigh, J. W. & Warnaby, C. E. Effect of propofol on heart rate and its coupling to cortical slow waves in humans. Anesthesiology 140, 62 (2024).

    PubMed 

    Google Scholar 

  • Lechinger, J., Heib, D. P. J., Gruber, W., Schabus, M. & Klimesch, W. Heartbeat-related EEG amplitude and phase modulations from wakefulness to deep sleep: interactions with sleep spindles and slow oscillations. Psychophysiology 52, 1441–1450 (2015).

    PubMed 

    Google Scholar 

  • Faes, L., Marinazzo, D., Jurysta, F. & Nollo, G. Linear and non-linear brain–heart and brain–brain interactions during sleep. Physiol. Meas. 36, 683 (2015).

    PubMed 

    Google Scholar 

  • Dumont, M. et al. Interdependency between heart rate variability and sleep EEG: linear/non-linear?. Clin. Neurophysiol. 115, 2031–2040 (2004).

    PubMed 

    Google Scholar 

  • Candia-Rivera, D., Faes, L., de Vico Fallani, F. & Chavez, M. Measures and Models of Brain-Heart Interactions. IEEE Rev. Biomed. Eng. 14, 1–17 (2025).

  • Zhang, C., Yeh, C.-H. & Shi, W. Variational phase-amplitude coupling characterizes signatures of anterior cortex under emotional processing. IEEE J. Biomed. Health Inform. 27, 1935–1945 (2023).

    PubMed 

    Google Scholar 

  • Dang-Vu, T. T. et al. Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. USA 105, 15160–15165 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Svanborg, E. & Guilleminault, C. EEG frequency changes during sleep apneas. Sleep 19, 248–254 (1996).

    PubMed 

    Google Scholar 

  • Simon, C. W. & Emmons, W. H. EEG, consciousness, and sleep. Science 124, 1066–1069 (1956).

    PubMed 

    Google Scholar 

  • Hermann, B. et al. Aberrant brain–heart coupling is associated with the severity of post cardiac arrest brain injury. Ann. Clin. Transal. Neurol. 11, 866–882 (2024).

    Google Scholar 

  • Stein, P. K. & Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep. Med. Rev. 16, 47–66 (2012).

    PubMed 

    Google Scholar 

  • Lyu, J., Shi, W., Zhang, C. & Yeh, C.-H. A novel sleep staging method based on EEG and ECG multimodal features combination. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4073–4084 (2023).

    PubMed 

    Google Scholar 

  • Kong, S. D. et al. Heart rate variability during slow wave sleep is linked to functional connectivity in the central autonomic network. Brain Commun. 5, fcad129 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zoccoli, G. & Amici, R. Sleep and autonomic nervous system. Curr. Opin. Physiol. 15, 128–133 (2020).

    Google Scholar 

  • Reyes del Paso, G. A., Langewitz, W., Mulder, L. J., Van Roon, A. & Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology 50, 477–487 (2013).

    PubMed 

    Google Scholar 

  • Lee, H., Park, J., Kim, H. & Lee, K.-J. New rule-based algorithm for real-time detecting sleep apnea and hypopnea events using a nasal pressure signal. J. Med. Syst. 40, 1–12 (2016).

    Google Scholar 

  • Rolón, R. E. et al. Automatic scoring of apnea and hypopnea events using blood oxygen saturation signals. Biomed. Signal Process. 62, 102062 (2020).

    Google Scholar 

  • Eckert, D. J. & Malhotra, A. Pathophysiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5, 144–153 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • De Chazal, P., Heneghan, C. & McNicholas, W. T. Multimodal detection of sleep apnoea using electrocardiogram and oximetry signals. Philos. Trans. R. Soc. A 367, 369–389 (2009).

    Google Scholar 

  • Berry, R. B. et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J. Clin. Sleep. Med. 8, 597–619 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dingli, K. et al. Spectral oscillations of RR intervals in sleep apnoea/hypopnoea syndrome patients. Eur. Resp. J. 22, 943–950 (2003).

    Google Scholar 

  • Dissanayake, H. U. et al. Association between autonomic function and obstructive sleep apnea: a systematic review. Sleep. Med. Rev. 57, 101470 (2021).

    PubMed 

    Google Scholar 

  • Li, X. et al. Interaction effect of obstructive sleep apnea and periodic limb movements during sleep on heart rate variability. J. Sleep. Res. 28, e12861 (2019).

    PubMed 

    Google Scholar 

  • Candia-Rivera, D. & Cnrs, M. C. In 13th Conference of the European Study Group on Cardiovascular Oscillations https://hal.science/hal-04813786v1/file/2024205034.pdf (ESGCO, 2024).

  • Faes, L. et al. Predictability decomposition detects the impairment of brain–heart dynamical networks during sleep disorders and their recovery with treatment. Philos. Trans. R. Soc. A 374, 20150177 (2016).

    Google Scholar 

  • Schreiner, T., Petzka, M., Staudigl, T. & Staresina, B. P. Respiration modulates sleep oscillations and memory reactivation in humans. Nat. Commun. 14, 8351 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tort, A. B., Hammer, M., Zhang, J., Brankačk, J. & Draguhn, A. Temporal relations between cortical network oscillations and breathing frequency during REM sleep. J. Neurosci. 41, 5229–5242 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, X. & Dworkin, B. R. Baroreflexes of the rat. VI. Sleep and responses to aortic nerve stimulation in the dmNTS. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1428–R1434 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Conway, J., Boon, N., Jones, J. V. & Sleight, P. Involvement of the baroreceptor reflexes in the changes in blood pressure with sleep and mental arousal. Hypertension 5, 746–748 (1983).

    PubMed 

    Google Scholar 

  • Batini, C., Moruzzi, G., Palestini, M., Rossi, G. F. & Zanchetti, A. Persistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science 128, 30–32 (1958).

    PubMed 

    Google Scholar 

  • Laguzzi, R., Reis, D. J. & Talman, W. T. Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Res. 304, 321–328 (1984).

    PubMed 

    Google Scholar 

  • Magnes, J., Moruzzi, G. & Pompeiano, O. Synchronization of the EEG produced by low-frequency electrical stimulation of the region of the solitary tract. Arch. Ital. Biol. 99, 33–67 (1961).

    Google Scholar 

  • Wang, Y., Shi, W. & Yeh, C.-H. A novel measure of cardiopulmonary coupling during sleep based on the synchrosqueezing transform algorithm. IEEE J. Biomed. Health Inform. 27, 1790–1800 (2023).

    PubMed 

    Google Scholar 

  • McAllen, R. & Spyer, K. The baroreceptor input to cardiac vagal motoneurones. J. Physiol. 282, 365 (1978).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbey, M., Jordan, D., Richter, D. & Spyer, K. Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J. Physiol. 356, 65–78 (1984).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moberly, A. H. et al. Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat. Commun. 9, 1528 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagur, S. et al. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12, 2605 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khalighi, S., Sousa, T., Santos, J. M. & Nunes, U. ISRUC-Sleep: a comprehensive public dataset for sleep researchers. Comput. Methods Prog. Biomed. 124, 180–192 (2016).

    Google Scholar 

  • O’reilly, C., Gosselin, N., Carrier, J. & Nielsen, T. Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research. J. Sleep. Res. 23, 628–635 (2014).

    PubMed 

    Google Scholar 

  • Berry, R. B. et al. AASM scoring manual updates for 2017 (version 2.4). J. Clin. Sleep. Med. 13, 665–666 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, J. & Tompkins, W. J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985).

  • McSharry, P. E., Clifford, G. D., Tarassenko, L. & Smith, L. A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50, 289–294 (2003).

    PubMed 

    Google Scholar 

  • Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Data Sci. Adapt. 1, 1–41 (2009).

    Google Scholar 

  • Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 903–995 (1998).

    Google Scholar 

  • Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. In Proc. 11th International Conference on Human Factors in Computing Systems. http://faculty.washington.edu/wobbrock/pubs/chi-11.06.pdf (SIGCHI, 2011).

  • Feys, J. Nonparametric tests for the interaction in two-way factorial designs using R. R. J. 8, 367–378 (2016).

    Google Scholar 

  • Continue Reading