World Health Organization. Global cancer burden growing amidst mounting need for services. WHO. (2024). Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing–amidst-mounting-need-for-services
American Cancer Society. Cancer Facts & Figs. 2024. ACS. (2024). Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2024-cancer-facts-figures.html
Housman, G. et al. Drug resistance in cancer: an overview. Cancers (Basel). 6 (3), 1769–1792. https://doi.org/10.3390/cancers6031769 (2014). PMID: 25198391; PMCID: PMC4190567.
Gottesman, M. M. Mechanisms of Cancer Drug Resistance. Annual Review of Medicine, 53(Volume 53, 2002), 615–627. https://doi.org/https://doi.org/ (2002). https://doi.org/10.1146/annurev.med.53.082901.103929
Ward, R. A. et al. Challenges and opportunities in cancer drug resistance. Chem. Rev. 121 (6), 3297–3351. https://doi.org/10.1021/acs.chemrev.0c00383 (2021).
Asma, S. T. et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers https://doi.org/10.3390/cancers14246203 (2022).
Khan, M. I. et al. Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations. Environ. Sci. Pollut. Res. 29 (17), 24411–24444. https://doi.org/10.1007/s11356-021-17795-7 (2022).
Yuan, M. et al. The role of bioactive compounds in natural products extracted from plants in cancer treatment and their mechanisms related to anticancer effects. Oxidative Med. Cell. Longev. 2022 (1), 1429869. https://doi.org/10.1155/2022/1429869 (2022).
Aydoğmuş-Öztürk, F., Jahan, H., Beyazit, N., Günaydın, K. & Choudhary, M. I. The anticancer activity of visnagin, isolated from Ammi Visnaga L., against the human malignant melanoma cell lines, HT 144. Mol. Biol. Rep. 46 (2), 1709–1714. https://doi.org/10.1007/s11033-019-04620-1 (2019).
Sharma, R. et al. Khellinoflavanone, a semisynthetic derivative of Khellin, overcomes Benzo[a]pyrene toxicity in human normal and cancer cells that express CYP1A1. ACS Omega. 3 (8), 8553–8566. https://doi.org/10.1021/acsomega.8b01088 (2018).
Ragab, F. A., Yahya, T. A. A., El-Naa, M. M. & Arafa, R. K. Design, synthesis and structure–activity relationship of novel semi-synthetic flavonoids as antiproliferative agents. Eur. J. Med. Chem. 82, 506–520. https://doi.org/10.1016/j.ejmech.2014.06.007 (2014).
Abdelhafez, O. M., Ali, H. I., Amin, K. M., Abdalla, M. M. & Ahmed, E. Y. Design, synthesis and anticancer activity of Furochromone and Benzofuran derivatives targeting VEGFR-2 tyrosine kinase. RSC Adv. 5 (32), 25312–25324. https://doi.org/10.1039/C4RA16228E (2015).
Amin, K. M. et al. Synthesis and molecular Docking study of new Benzofuran and furo[3,2-g]chromone-based cytotoxic agents against breast cancer and p38α MAP kinase inhibitors. Bioorg. Chem. 76, 487–500. https://doi.org/10.1016/j.bioorg.2017.12.029 (2018).
Abdelhafez, O. M. et al. Design and molecular modeling of novel P38α MAPK inhibitors targeting breast cancer, synthesized from oxygen heterocyclic natural compounds. Bioorg. Med. Chem. 27 (7), 1308–1319. https://doi.org/10.1016/j.bmc.2019.02.027 (2019).
Montassier, E. et al. Chemotherapy-driven dysbiosis in the intestinal Microbiome. Aliment. Pharmacol. Ther. 42 (5), 515–528. https://doi.org/10.1111/apt.13302 (2015).
Derosa, L. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 29 (6), 1437–1444. https://doi.org/10.1093/annonc/mdy103 (2018).
Gopalakrishnan, V. et al. Gut Microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359 (6371), 97–103. https://doi.org/10.1126/science.aan4236 (2018).
Kossakowski, J. & Zawadowski, T. SYNTHESIS OF AMINOALKANOL AND AMINOETHYL DERIVATIVES OF 4,9-DIHYDROXY-7-ETHYL-5H-FURO[3,2-g][1]BENZOPYRAN-5-ONE. Pol. J. Chem. 61, 77–83 (1987).
Kossakowski, J. & Zawadowski, T. Synthesis of 4-(3-amino-2-hydroxypropoxy)furobenzopyrans. Acta Pol. Pharm. 43 (6), 539–542 (1986).
Sazonova, E. V., Chesnokov, M. S., Zhivotovsky, B. & Kopeina, G. S. Drug toxicity assessment: cell proliferation versus cell death. Cell. Death Discovery. 8 (1), 417. https://doi.org/10.1038/s41420-022-01207-x (2022).
Decker, T. & Lohmann-Matthes, M. L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods. 115 (1), 61–69. https://doi.org/10.1016/0022-1759(88)90310-9 (1988).
Mustafa, M. et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells https://doi.org/10.3390/cells13221838 (2024).
Huang, G. et al. Synthesis and biological evaluation of sulfur-containing Shikonin oxime derivatives as potential antineoplastic agents. Eur. J. Med. Chem. 143, 166–181. https://doi.org/10.1016/j.ejmech.2017.11.031 (2018).
Huang, G. et al. Discovery and synthesis of sulfur-containing 6-substituted 5,8-dimethoxy-1,4-naphthoquinone oxime derivatives as new and potential anti-MDR cancer agents. Eur. J. Med. Chem. 165, 160–171. https://doi.org/10.1016/j.ejmech.2019.01.005 (2019).
Cui, J. et al. DMAKO-20 as a new multitarget anticancer prodrug activated by the tumor specific CYP1B1 enzyme. Mol. Pharm. 16 (1), 409–421. https://doi.org/10.1021/acs.molpharmaceut.8b01062 (2019).
Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33 (3), 127–148. https://doi.org/10.1093/intimm/dxaa078 (2021).
Ashkenazi, A., Fairbrother, W. J., Leverson, J. D. & Souers, A. J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discovery. 16 (4), 273–284. https://doi.org/10.1038/nrd.2016.253 (2017).
Levantini, E., Maroni, G., del Re, M. & Tenen, D. G. EGFR signaling pathway as therapeutic target in human cancers. Sem. Cancer Biol. 85, 253–275. https://doi.org/10.1016/j.semcancer.2022.04.002 (2022).
Sun, X., Shan, X., Zunhua, Y., Pengwu, Z., Zhu, W. & and Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: a patent review (2014-present). Expert Opin. Ther. Pat. 31 (3), 223–238. https://doi.org/10.1080/13543776.2021.1860210 (2021).
Birkinshaw, R. W. et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 10 (1), 2385. https://doi.org/10.1038/s41467-019-10363-1 (2019).
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435 (7042), 677–681. https://doi.org/10.1038/nature03579 (2005).
Lee, E. F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell. Death Differ. 14 (9), 1711–1713. https://doi.org/10.1038/sj.cdd.4402178 (2007).
Hargreaves, D. et al. Design of rigid protein–protein interaction inhibitors enables targeting of undruggable Mcl-1. Proceedings of the National Academy of Sciences, 120(21), e2221967120. (2023). https://doi.org/10.1073/pnas.2221967120
Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Epidermal growth factor receptor tyrosine kinase domain with 4-anilinoquinazoline inhibitor erlotinib (2002). https://doi.org/10.2210/pdb1M17/pdb
Yun, C. H. et al. Crystal structure of EGFR kinase domain G719S mutation in complex with Iressa (2006). https://doi.org/10.2210/pdb2ITO/pdb
Gajiwala, K. S. et al. Crystal structure of the wild-type EGFR kinase domain in complex with Dacomitinib (soaked) (2012). https://doi.org/10.2210/pdb4I23/pdb
Yun, C. H. & Eck, M. J. EGFR L858R in complex with PD168393 (2013). https://doi.org/10.2210/pdb4LQM/pdb
Hargreaves, D., Studies, Reversible & EGFR C797S Triple Mutant Inhibitor Series. Towards a (2020). https://doi.org/10.2210/pdb7AEM/pdb
Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discovery. 3 (11), 935–949. https://doi.org/10.1038/nrd1549 (2004).
Ting, N. L., Lau, H. C. & Yu, J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 71 (7), 1412–1425. https://doi.org/10.1136/gutjnl-2021-326264 (2022).
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res., 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 (2000).
Eastman, P. et al. OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9 (1), 461–469. https://doi.org/10.1021/ct300857j (2013).
Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J. Comput. Chem. 30 (16), 2785–2791. https://doi.org/10.1002/jcc.21256 (2009).
O’Boyle, N. M. et al. Open babel: an open chemical toolbox. J. Cheminform. 3, 33. https://doi.org/10.1186/1758-2946-3-33 (2011).
Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334 (2010).
Koes, D. R., Baumgartner, M. P. & Camacho, C. J. Lessons learned in empirical scoring with Smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53 (8), 1893–1904. https://doi.org/10.1021/ci300604z (2013).
Pagadala, N. S. et al. Software for molecular docking: a review. Biophys. Rev. 9 (2), 91–102. https://doi.org/10.1007/s12551-016-0247-1 (2017).
Salentin, S. et al. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv315 (2015).
Rego, N. & Koes, D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics 31 (8), 1322–1324. https://doi.org/10.1093/bioinformatics/btu829 (2015).
BIOVIA & Systèmes, D. Discovery Studio Visualizer, Version 20.1.0.19295 (Dassault Systèmes, 2020).
Szulczyk, D. et al. Design and synthesis of novel 1H-tetrazol-5-amine based potent antimicrobial agents: DNA topoisomerase IV and gyrase affinity evaluation supported by molecular Docking studies. Eur. J. Med. Chem. 156, 631–640. https://doi.org/10.1016/j.ejmech.2018.07.041 (2018).
Woods, G. L. et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes [Internet]. 2nd edition. Wayne (PA): Clinical and Laboratory Standards Institute; 2011 Mar. (CLSI publication / Clinical and Laboratory Standards Institute, No. 31.5.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK544374/
Franzblau, S. G. et al. Rapid, Low-Technology MIC Determination with Clinical Mycobacterium tuberculosis Isolates by Using the Microplate Alamar Blue Assay. J. Clin. Microbiology. 3654, 362–366. https://doi.org/10.1128/JCM.36.2.362-366 (1998).