Jordan, G. C., Perets, H. B., Fisher, R. T. & van Rossum, D. R. Failed-detonation supernovae: subluminous low-velocity Ia supernovae and their kicked remnant white dwarfs with iron-rich cores. Astrophys. J. Lett. 761, L23 (2012).
Google Scholar
Vennes, S. et al. An unusual white dwarf star may be a surviving remnant of a subluminous type Ia supernova. Science 357, 680–683 (2017).
Google Scholar
Shen, K. J. et al. Three hypervelocity white dwarfs in Gaia DR2: evidence for dynamically driven double-degenerate double-detonation type Ia supernovae. Astrophys. J. 865, 15 (2018).
Google Scholar
El-Badry, K. et al. The fastest stars in the Galaxy. Open J. Astrophys. 6, 28 (2023).
Raddi, R. et al. Further insight on the hypervelocity white dwarf, LP 40-365 (GD 492): a nearby emissary from a single-degenerate type Ia supernova. Astrophys. J. 858, 3 (2018).
Google Scholar
Raddi, R. et al. Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae. Mon. Not. R. Astron. Soc. 489, 1489–1508 (2019).
Google Scholar
Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Gaia Collaborationet al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).
Igoshev, A. P., Perets, H. & Hallakoun, N. Hyper-runaway and hypervelocity white dwarf candidates in Gaia Data Release 3: possible remnants from Ia/Iax supernova explosions or dynamical encounters. Mon. Not. R. Astron. Soc. 518, 6223–6237 (2023).
Google Scholar
Scholz, R. D. Hypervelocity star candidates from Gaia DR2 and DR3 proper motions and parallaxes. Astron. Astrophys. 685, A162 (2024).
Google Scholar
Bhat, A. et al. Supernova shocks cannot explain the inflated state of hypervelocity runaways from white dwarf binaries. Astron. Astrophys. 693, A114 (2025).
Wong, T. L. S., White, C. J. & Bildsten, L. Shocking and mass loss of compact donor stars in type Ia supernovae. Astrophys. J. 973, 65 (2024).
Hansen, B. M. S. Type Ia supernovae and high-velocity white dwarfs. Astrophys. J. 582, 915–918 (2003).
Google Scholar
Blaauw, A. On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bull. Astron. Inst. Neth. 15, 265 (1961).
Google Scholar
Guillochon, J., Dan, M., Ramirez-Ruiz, E. & Rosswog, S. Surface detonations in double degenerate binary systems triggered by accretion stream instabilities. Astrophys. J. Lett. 709, L64–L69 (2010).
Google Scholar
Pakmor, R., Kromer, M., Taubenberger, S. & Springel, V. Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. Lett. 770, L8 (2013).
Google Scholar
Sato, Y. et al. A systematic study of carbon-oxygen white dwarf mergers: mass combinations for type Ia supernovae. Astrophys. J. 807, 105 (2015).
Google Scholar
Iben Jr, I. & Tutukov, A. V. On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses. Astrophys. J. Suppl. Ser. 58, 661–710 (1985).
Google Scholar
Iben Jr, I., Nomoto, K. I., Tornambe, A. & Tutukov, A. V. On interacting helium star–white dwarf pairs as supernova precursors. Astrophys. J. 317, 717 (1987).
Google Scholar
Bauer, E. B., Chandra, V., Shen, K. J. & Hermes, J. J. Masses of white dwarf binary companions to type Ia supernovae measured from runaway velocities. Astrophys. J. Lett. 923, L34 (2021).
Google Scholar
Bauer, E. B., White, C. J. & Bildsten, L. Remnants of subdwarf helium donor stars ejected from close binaries with thermonuclear supernovae. Astrophys. J. 887, 68 (2019).
Google Scholar
Shields, J. V. et al. No surviving sn Ia companion in SNR 0509-67.5: stellar population characterization and comparison to models. Astrophys. J. Lett. 950, L10 (2023).
Google Scholar
Tanikawa, A., Nomoto, K., Nakasato, N. & Maeda, K. Double-detonation models for Type Ia Supernovae: trigger of detonation in companion white dwarfs and signatures of companions’ stripped-off materials. Astrophys. J. 885, 103 (2019).
Google Scholar
Pakmor, R., Zenati, Y., Perets, H. B. & Toonen, S. Thermonuclear explosion of a massive hybrid HeCO white dwarf triggered by a He detonation on a companion. Mon. Not. R. Astron. Soc. 503, 4734–4747 (2021).
Google Scholar
Pakmor, R. et al. On the fate of the secondary white dwarf in double-degenerate double-detonation type Ia supernovae. Mon. Not. R. Astron. Soc. 517, 5260–5271 (2022).
Google Scholar
Boos, S. J., Townsley, D. M. & Shen, K. J. Type Ia supernovae can arise from the detonations of both stars in a double degenerate binary. Astrophys. J. 972, 200 (2024).
Pollin, J. M. et al. On the fate of the secondary white dwarf in double-degenerate double-detonation type Ia supernovae – II. 3D synthetic observables. Mon. Not. R. Astron. Soc. 533, 3036–3052 (2024).
Iben Jr, I. & Tutukov, A. V. On the evolution of close binaries with components of initial mass between 3 M⊙ and 12 M⊙. Astrophys. J. Suppl. Ser. 58, 661–710 (1985).
Google Scholar
Zenati, Y., Toonen, S. & Perets, H. B. Formation and evolution of hybrid He-CO white dwarfs and their properties. Mon. Not. R. Astron. Soc. 482, 1135–1142 (2019).
Google Scholar
Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).
Google Scholar
Waldman, R. et al. Helium shell detonations on low-mass white dwarfs as a possible explanation for SN 2005E. Astrophys. J. 738, 21 (2011).
Google Scholar
Sim, S. A. et al. 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Mon. Not. R. Astron. Soc. 420, 3003–3016 (2012).
Google Scholar
Zenati, Y. et al. The origins of calcium-rich supernovae from disruptions of CO white dwarfs by hybrid He-CO white dwarfs. Astrophys. J. 944, 22 (2023).
Google Scholar
Taubenberger, S. in The Extremes of Thermonuclear Supernovae (eds Alsabti, A. W. & Murdin, P.) Handbook of Supernovae 317 (Springer, 2017).
Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).
Google Scholar
Werner, K., El-Badry, K., Gänsicke, B. T. & Shen, K. J. Ultraviolet spectroscopy of the supernova Ia hypervelocity runaway white dwarf J0927-6335. Astron. Astrophys. 689, L6 (2024).
Perets, H. B., Zenati, Y., Toonen, S. & Bobrick, A. Normal type Ia supernovae from disruptions of hybrid He-CO white-dwarfs by CO white-dwarfs. Preprint at https://arxiv.org/abs/1910.07532 (2019).
Zenati, Y., Toonen, S. & Perets, H. B. Formation and evolution of hybrid He-CO white dwarfs and their properties. Mon. Not. R. Astron. Soc. 482, 1135–1142 (2018).
Google Scholar
Zenati, Y., Perets, H. B. & Toonen, S. Neutron star-white dwarf mergers: early evolution, physical properties, and outcomes. Mon. Not. R. Astron. Soc. 486, 1805–1813 (2019).
Google Scholar
Pakmor, R., Bauer, A. & Springel, V. Magnetohydrodynamics on an unstructured moving grid. Mon. Not. R. Astron. Soc. 418, 1392–1401 (2011).
Google Scholar
Zhu, C., Pakmor, R., van Kerkwijk, M. H. & Chang, P. Magnetized moving mesh merger of a carbon-oxygen white dwarf binary. Astrophys. J. Lett. 806, L1 (2015).
Google Scholar
Weinberger, R., Springel, V. & Pakmor, R. The AREPO public code release. Astrophys. J. Suppl. Ser. 248, 32 (2020).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).
Google Scholar
Bhat, A. MESA files for origins of the fastest stars from merger-disruption of he-co white dwarfs. Zenodo https://doi.org/10.5281/zenodo.15700950 (2025).
Pakmor, R. et al. Improving the convergence properties of the moving-mesh code AREPO. Mon. Not. R. Astron. Soc. 455, 1134–1143 (2016).
Google Scholar
Jermyn, A. S. et al. Modules for Experiments in Stellar Astrophysics (MESA): time-dependent convection, energy conservation, automatic differentiation, and infrastructure. Astrophys. J. Suppl. Ser. 265, 15 (2023).
Google Scholar
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Google Scholar
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).