Aquarius helicase facilitates HIV-1 integration into R-loop enriched genomic regions

  • Lusic, M. & Siliciano, R. F. Nuclear landscape of HIV-1 infection and integration. Nat. Rev. Microbiol. 15, 69–82 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Armani-Tourret, M. et al. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat. Rev. Microbiol. 22, 328–344 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Passos, D. O., Li, M., Craigie, R. & Lyumkis, D. Retroviral integrase: structure, mechanism, and inhibition. Enzymes 50, 249–300 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowotny, M. Retroviral integrase superfamily: the structural perspective. EMBO Rep. 10, 144–151 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savarino, A. In-silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology 4, 21 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapaillerie, D. et al. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Res. 49, 11241–11256 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kessl, J. J. et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell 166, 1257–1268.e12 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winans, S. & Goff, S. P. Mutations altering acetylated residues in the CTD of HIV-1 integrase cause defects in proviral transcription at early times after integration of viral DNA. PLoS Pathog. 16, e1009147 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marini, B. et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 521, 227–231 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lucic, B. et al. Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration. Nat. Commun. 10, 4059 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bedwell, G. J., Jang, S., Li, W., Singh, P. K. & Engelman, A. N. rigrag: high-resolution mapping of genic targeting preferences during HIV-1 integration in vitro and in vivo. Nucleic Acids Res. 49, 7330–7346 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, A. C. et al. HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nat. Commun. 11, 3505 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scoca, V., Morin, R., Collard, M., Tinevez, J.-Y. & Di Nunzio, F. HIV-induced membraneless organelles orchestrate post-nuclear entry steps. J. Mol. Cell Biol. 14, mjac060 (2023).

    PubMed 

    Google Scholar 

  • Cherepanov, P. LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res. 35, 113–124 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, P. K. et al. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes. Genes Dev. 29, 2287–2297 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michieletto, D., Lusic, M., Marenduzzo, D. & Orlandini, E. Physical principles of retroviral integration in the human genome. Nat. Commun. 10, 575 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miklík, D., Grim, J., Elleder, D. & Hejnar, J. Unraveling the palindromic and nonpalindromic motifs of retroviral integration site sequences by statistical mixture models. Genome Res. 33, 1395–1408 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luna, R., Gómez-González, B. & Aguilera, A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev. https://doi.org/10.1101/gad.351853.124 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brickner, J. R., Garzon, J. L. & Cimprich, K. A. Walking a tightrope: the complex balancing act of R-loops in genome stability. Mol. Cell 82, 2267–2297 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, K. et al. Human immunodeficiency virus-1 induces host genomic R-loops and preferentially integrates its genome near the R-loop regions. Elife 13, RP97348 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kok, Y. L. et al. Monocyte-derived macrophages exhibit distinct and more restricted HIV-1 integration site repertoire than CD4+ T cells. Sci. Rep. 6, 24157 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maldarelli, F. et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, T. A. et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. CPSF6-dependent targeting of speckle-associated domains distinguishes primate from nonprimate lentiviral integration. mBio 11, e02254-20 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rheinberger, M. et al. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep. 42, 112110 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Agirre, E., Oldfield, A. J., Bellora, N., Segelle, A. & Luco, R. F. Splicing-associated chromatin signatures: a combinatorial and position-dependent role for histone marks in splicing definition. Nat. Commun. 12, 682 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, A. S. et al. Integration features of intact latent HIV-1 in CD4+ T cell clones contribute to viral persistence. J. Exp. Med. 218, e20211427 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lian, X. et al. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers. Sci. Transl. Med. 13, eabl4097 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lian, X. et al. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe 31, 83–96.e5 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Engelman, A. N. & Kvaratskhelia, M. Multimodal functionalities of HIV-1 integrase. Viruses 14, 926 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, S. & Mahmoudi, T. DEAD-ly affairs: the roles of DEAD-Box proteins on HIV-1 viral RNA metabolism. Front. Cell Dev. Biol. 10, 917599 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • König, R. et al. Global analysis of host–pathogen interactions that regulate early-stage HIV-1 replication. Cell 135, 49–60 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, T. G. et al. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. Elife 10, e64776 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • De, I. et al. The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes. Nat. Struct. Mol. Biol. 22, 138–144 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Schmitzová, J., Cretu, C., Dienemann, C., Urlaub, H. & Pena, V. Structural basis of catalytic activation in human splicing. Nature 617, 842–850 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goulielmaki, E. et al. The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat. Commun. 12, 3153 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donnio, L.-M. et al. XAB2 dynamics during DNA damage-dependent transcription inhibition. Elife 11, e77094 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, K. et al. Genomic profiling of native R loops with a DNA–RNA hybrid recognition sensor. Sci. Adv. 7, eabe3516 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LeRoy, G. et al. LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. Sci. Adv. 5, eaay3068 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sowd, G. A. et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl Acad. Sci. USA 113, E1054–E1063 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kastner, B., Will, C. L., Stark, H. & Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. 11, a032417 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Mol. Cell 83, 2856–2871.e8 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, R. et al. CTCF/RAD21 organize the ground state of chromatin–nuclear speckle association. Nat. Struct. Mol. Biol. 32, 1069–1080 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayakumar, S. et al. PSIP1/LEDGF reduces R-loops at transcription sites to maintain genome integrity. Nat. Commun. 15, 361 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali, H. et al. Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nat. Commun. 10, 926 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pear, W. S., Nolan, G. P., Scott, M. L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. USA 90, 8392–8396 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holmes, M., Zhang, F. & Bieniasz, P. D. Single-cell and single-cycle analysis of HIV-1 replication. PLoS Pathog. 11, e1004961 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaller, T., Hué, S. & Towers, G. J. An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins. J. Virol. 81, 11713–11721 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Battivelli, E. & Verdin, E. HIVGKO: a tool to assess HIV-1 latency reversal agents in human primary CD4+ T cells. Bio Protoc. 8, e3050 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolp, B. et al. HIV-1 Nef interferes with T-lymphocyte circulation through confined environments in vivo. Proc. Natl Acad. Sci. USA 109, 18541–18546 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albanese, M. et al. Rapid, efficient and activation-neutral gene editing of polyclonal primary human resting CD4+ T cells allows complex functional analyses. Nat. Methods 19, 81–89 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Pizzato, M. et al. A one-step SYBR Green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants. J. Virol. Methods 156, 1–7 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  • Benleulmi, M. S. et al. Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology 12, 13 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, F., Seamon, J. A. & Roth, M. J. Mutational analysis of the N-terminus of Moloney murine leukemia virus integrase. Virology 291, 32–45 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chédin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benleulmi, M. S. et al. Modulation of the functional association between the HIV-1 intasome and the nucleosome by histone amino-terminal tails. Retrovirology 14, 54 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boleslavska, B. et al. DDX17 helicase promotes resolution of R-loop-mediated transcription–replication conflicts in human cells. Nucleic Acids Res. 50, 12274–12290 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Sanz, L. A. & Chédin, F. High-resolution, strand-specific R-loop mapping via S9.6-based DNA–RNA immunoprecipitation and high-throughput sequencing. Nat. Protoc. 14, 1734–1755 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halász, L. et al. RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases. Genome Res. 27, 1063–1073 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 48, D882–D889 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P. & Marth, G. T. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691–1692 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brady, T. et al. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23, 1461–1471 (2009).

    PubMed 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).

    Google Scholar 

  • Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srezović, B. AQR_R-loops. Zenodo https://doi.org/10.5281/zenodo.16366857 (2025).

  • Ikeda, T., Shibata, J., Yoshimura, K., Koito, A. & Matsushita, S. Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J. Infect. Dis. 195, 716–725 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Han, Y. et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78, 6122–6133 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohn, L. B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading