Manzoor, U., Mujica Roncery, L., Raabe, D. & Souza Filho, I. R. Sustainable nickel enabled by hydrogen-based reduction. Nature 641, 365–373 (2025).
Google Scholar
Spreitzer, D. & Schenk, J. Reduction of iron oxides with hydrogen—a review. Steel Res. Int. 90, 1900108 (2019).
Chee, S. W., Lunkenbein, T., Schlögl, R. & Roldán Cuenya, B. Operando electron microscopy of catalysts: the missing cornerstone in heterogeneous catalysis research? Chem. Rev. 123, 13374–13418 (2023).
Google Scholar
Chenna, S., Banerjee, R. & Crozier, P. A. Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. ChemCatChem 3, 1051–1059 (2011).
Google Scholar
Zeng, L., Cheng, Z., Fan, J. A., Fan, L. S. & Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2, 349–364 (2018).
Google Scholar
Wei, S., Ma, Y. & Raabe, D. One step from oxides to sustainable bulk alloys. Nature 633, 816–822 (2024).
Google Scholar
Kim, J. Y., Rodriguez, J. A., Hanson, J. C., Frenkel, A. I. & Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125, 10684–10692 (2003).
Google Scholar
Wang, X., Hanson, J. C., Frenkel, A. I., Kim, J.-Y. & Rodriguez, J. A. Time-resolved studies for the mechanism of reduction of copper oxides with carbon monoxide: complex behavior of lattice oxygen and the formation of suboxides. J. Phys. Chem. B 108, 13667–13673 (2004).
Google Scholar
Rodriguez, J. A., Hanson, J. C., Frenkel, A. I., Kim, J. Y. & Pérez, M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction. J. Am. Chem. Soc. 124, 346–354 (2002).
Google Scholar
Luo, L. et al. Atomic origins of water-vapour-promoted alloy oxidation. Nat. Mater. 17, 514–518 (2018).
Google Scholar
Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).
Google Scholar
Zou, L., Li, J., Zakharov, D. N., Stach, E. A. & Zhou, G. In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).
Google Scholar
Yuan, W. et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 367, 428–430 (2020).
Google Scholar
Lagrow, A. P., Ward, M. R., Lloyd, D. C., Gai, P. L. & Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179–185 (2017).
Google Scholar
Sun, X. et al. Atomic origin of the autocatalytic reduction of monoclinic CuO in a hydrogen atmosphere. J. Phys. Chem. Lett. 12, 9547–9556 (2021).
Google Scholar
Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 4–8 (2022).
Rukini, A., Rhamdhani, M. A., Brooks, G. A. & Van den Bulck, A. Metals production and metal oxides reduction using hydrogen: a review. J. Sustain. Metall. 8, 1–24 (2022).
Chen, J. & Hayes, P. C. Mechanisms and kinetics of reduction of solid NiO in CO/CO2 and CO/Ar gas mixtures. Metall. Mater. Trans. B 50, 2623–2635 (2019).
Google Scholar
Krasuk, J. H. & Smith, J. M. Kinetics of reduction of nickel oxide with CO. AIChE J. 18, 506–512 (1972).
Google Scholar
Antola, O., Holappa, L. & Paschen, P. Nickel ore reduction by hydrogen and carbon monoxide containing gases. Miner. Process. Extr. Metall. Rev. 15, 169–179 (1995).
Google Scholar
Scholz, J. J. & Langell, M. A. Kinetic analysis of surface reduction in transition metal oxide single crystals. Surf. Sci. 164, 543–557 (1985).
Google Scholar
Wang, J. et al. Effect of the chemical states of copper on methanol decomposition and oxidation. J. Phys. Chem. C 128, 4559–4572 (2024).
Google Scholar
Swallow, J. E. N. et al. Revealing the role of CO during CO2 hydrogenation on Cu surfaces with in situ soft X-ray spectroscopy. J. Am. Chem. Soc. 145, 6730–6740 (2023).
Google Scholar
Peck, M. A. & Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24, 4483–4490 (2012).
Google Scholar
Furstenau, R. P., McDougall, G. & Langell, M. A. Initial stages of hydrogen reduction of NiO(100). Surf. Sci. 150, 55–79 (1985).
Google Scholar
Norby, T. Protonic defects in oxides and their possible role in high temperature oxidation. J. Phys. IV 3, C9-99–C9-106 (1993).
Li, S., Ding, W., Meitzner, G. D. & Iglesia, E. Spectroscopic and transient kinetic studies of site requirements in iron-catalyzed Fischer–Tropsch synthesis. J. Phys. Chem. B 106, 85–91 (2002).
Google Scholar
Janbroers, S., Crozier, P. A., Zandbergen, H. W. & Kooyman, P. J. A model study on the carburization process of iron-based Fischer–Tropsch catalysts using in situ TEM–EELS. Appl. Catal. B 102, 521–527 (2011).
Google Scholar
Andersson, D. A., Simak, S. I., Skorodumova, N. V., Abrikosov, I. A. & Johansson, B. Optimization of ionic conductivity in doped ceria. Proc. Natl Acad. Sci. USA 103, 3518–3521 (2006).
Google Scholar
Matsubu, J. C. et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).
Google Scholar
Sun, X. et al. Atomic‐scale mechanism of unidirectional oxide growth. Adv. Funct. Mater. 30, 1906504 (2020).
Google Scholar
Boyes, E. D. & Gai, P. L. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219–232 (1997).
Google Scholar
Gai, P. L. et al. Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 32, 1044–1050 (2007).
Google Scholar
Gai, P. L., Lari, L., Ward, M. R. & Boyes, E. D. Visualisation of single atom dynamics and their role in nanocatalysts under controlled reaction environments. Chem. Phys. Lett. 592, 355–359 (2014).
Google Scholar
LaGrow, A. P., Lloyd, D. C., Gai, P. L. & Boyes, E. D. In situ scanning transmission electron microscopy of Ni nanoparticle redispersion via the reduction of hollow NiO. Chem. Mater. 30, 197–203 (2018).
Google Scholar
Helveg, S. et al. Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004).
Google Scholar
Yoshida, H. et al. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317–319 (2012).
Google Scholar
Xie, D. G. et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899–903 (2015).
Google Scholar
Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons with theory. Phys. Rev. B 26, 614–635 (1982).
Google Scholar
Sparrow, T. G., Williams, B. G., Rao, C. N. R. & Thomas, J. M. L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides. Chem. Phys. Lett. 108, 547–550 (1984).
Google Scholar
Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006).
Google Scholar
Carley, A. F., Jackson, S. D., O’Shea, J. N. & Roberts, M. W. The formation and characterisation of Ni3+—an X-ray photoelectron spectroscopic investigation of potassium-doped Ni (110)–O. Surf. Sci. 440, L868–L874 (1999).
Google Scholar
McIntyre, N. S. & Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521–1529 (1977).
Google Scholar
Zhao, X. et al. Multiple metal-nitrogen bonds synergistically boosting the activity and durability of high-entropy alloy electrocatalysts. J. Am. Chem. Soc. 146, 3010–3022 (2024).
Google Scholar
Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).
Google Scholar
Kresse, G. & Furthmüler, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Google Scholar
Xu, Q., Cheah, S. & Zhao, Y. Initial reduction of the NiO(100) surface in hydrogen. J. Chem. Phys. 139, 024704 (2013).
Google Scholar
Ferrari, A. M., Pisani, C., Cinquini, F., Giordano, L. & Pacchioni, G. Cationic and anionic vacancies on the NiO(100) surface: DFT + U and hybrid functional density functional theory calculations. J. Chem. Phys. 127, 174711 (2007).
Google Scholar
Jeon, J., Yu, B. D. & Hyun, S. Adsorption properties of transition metal atoms on strongly correlated NiO(001) surfaces with surface oxygen vacancies. Curr. Appl. Phys. 15, 679–682 (2015).
Google Scholar
Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).
Google Scholar
Jónsson, H., Mills, G. & Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J. et al.) 385–404 (World Scientific, 1998).
He, Y., Dulub, O., Cheng, H., Selloni, A. & Diebold, U. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009).
Google Scholar
Yu, J., Rosso, K. M. & Bruemmer, S. M. Charge and ion transport in NiO and aspects of Ni oxidation from first principles. J. Phys. Chem. C 116, 1948–1954 (2012).
Google Scholar
Wagner Jr, J. B. in Defects and Transport in Oxides (eds Seltzer, M. S. & Jaffee, R. I.) 283–301 (Springer, 1974).
Malyshev, O. B. & Middleman, K. J. In situ ultrahigh vacuum residual gas analyzer ‘calibration’. J. Vac. Sci. Technol. A 26, 1474–1479 (2008).
Google Scholar