Novel PLA-Henna composite for sustainable tertiary enhanced oil recovery

  • Feng, G. et al. Novel facile nonaqueous precipitation in-situ synthesis of mullite whisker skeleton porous materials. Ceram. Int. 44(18), 22904–22910 (2018).

    CAS 

    Google Scholar 

  • Feng, G. et al. Luminescent properties of novel red-emitting M7Sn(PO4)6: Eu3+ (M= Sr, Ba) for light-emitting diodes. Luminescence 33(2), 455–460 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Feng, G. et al. Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method. Ceram. Int. 49(18), 30603–30612 (2023).

    CAS 

    Google Scholar 

  • Liao, H., Xu, T. & Yu, H. Progress and prospects of EOR technology in deep, massive sandstone reservoirs with a strong bottom-water drive. Energy Geosci. 5(1), 100164 (2024).

    Google Scholar 

  • Nowrouzi, I., Mohammadi, A. H. & Khaksar Manshad, A. Benchmarking the potential of a resistant green hydrocolloid for chemical enhanced oil recovery from sandstone reservoirs. Can. J. Chem. Eng. 103(1), 230–250 (2025).

    CAS 

    Google Scholar 

  • Khojastehmehr, M., Madani, M. & Daryasafar, A. Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm. Energy Rep. 5, 529–544 (2019).

    Google Scholar 

  • Madani, M. et al. Fundamental investigation of an environmentally-friendly surfactant agent for chemical enhanced oil recovery. Fuel 238, 186–197 (2019).

    CAS 

    Google Scholar 

  • Najafi, S. A. S. et al. Experimental and theoretical investigation of CTAB microemulsion viscosity in the chemical enhanced oil recovery process. J. Mol. Liq. 232, 382–389 (2017).

    Google Scholar 

  • Hasankhani, G. M. et al. Experimental investigation of asphaltene-augmented gel polymer performance for water shut-off and enhancing oil recovery in fractured oil reservoirs. J. Mol. Liq. 275, 654–666 (2019).

    CAS 

    Google Scholar 

  • Lebouachera, S. E. I. et al. Mini-review on the evaluation of thermodynamic parameters for surfactants adsorption onto rock reservoirs: cEOR applications. Chem. Pap. (2024).

  • Golab, E. G. et al. Synthesis of hydrophobic polymeric surfactant (Polyacrylamide/Zwitterionic) and its effect on enhanced oil recovery (EOR). Chem. Phys. Impact 9, 100756 (2024).

    Google Scholar 

  • Lebouachera, S. E. I. et al. Experimental design methodology as a tool to optimize the adsorption of new surfactant on the Algerian rock reservoir: cEOR applications. Eur. Phys. J. Plus 134(9), 436 (2019).

    CAS 

    Google Scholar 

  • Khezerlooe-ye Aghdam, S. et al. Mechanistic assessment of Seidlitzia rosmarinus-derived surfactant for restraining shale hydration: A comprehensive experimental investigation. Chem. Eng. Res. Des. 147, 570–578 (2019).

    CAS 

    Google Scholar 

  • Khezerloo-ye Aghdam, S., Kazemi, A. & Ahmadi, M. Theoretical and experimental study of fine migration during low-salinity water flooding: Effect of brine composition on interparticle forces. SPE Reserv. Eval. Eng. 26(02), 228–243 (2023).

    Google Scholar 

  • Dai, T. et al. Waste glass powder as a high temperature stabilizer in blended oil well cement pastes: Hydration, microstructure and mechanical properties. Constr. Build. Mater. 439, 137359 (2024).

    CAS 

    Google Scholar 

  • Feng, G. et al. Low-temperature preparation of novel stabilized aluminum titanate ceramic fibers via nonhydrolytic sol-gel method through linear self-assembly of precursors. Ceram. Int. 45(15), 18704–18709 (2019).

    CAS 

    Google Scholar 

  • Feng, G. et al. A novel red phosphor NaLa4(SiO4)3F:Eu3+. Mater. Lett. 65(1), 110–112 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Feng, G. et al. Synthesis and luminescent properties of novel red-emitting M7Sn(PO4)6: Eu3+ (M= Sr, Ba) phosphors. Process. Appl. Ceram. 12(1), 8–12 (2018).

    CAS 

    Google Scholar 

  • Feng, G. et al. Novel nonaqueous precipitation synthesis of alumina powders. Ceram. Int. 43(16), 13461–13468 (2017).

    CAS 

    Google Scholar 

  • Bashir, A., Sharifi Haddad, A. & Rafati, R. A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: Analyses of key influencing factors. Petrol. Sci. 19(3), 1211–1235 (2022).

    CAS 

    Google Scholar 

  • Saberi, H., Karimian, M. & Esmaeilnezhad, E. Performance evaluation of ferro-fluids flooding in enhanced oil recovery operations based on machine learning. Eng. Appl. Artif. Intell. 132, 107908 (2024).

    Google Scholar 

  • Zulkifli, N. N. et al. Evaluation of new surfactants for enhanced oil recovery applications in high-temperature reservoirs. J. Petrol. Explor. Prod. Technol. 10(2), 283–296 (2020).

    CAS 

    Google Scholar 

  • Mosalman Haghighi, O. & Mohsenatabar Firozjaii, A. An experimental investigation into enhancing oil recovery using combination of new green surfactant with smart water in oil-wet carbonate reservoir. J. Petrol. Explor. Prod. Technol. 10(3), 893–901 (2020).

    CAS 

    Google Scholar 

  • Feng, G. et al. Synthesis and luminescence properties of Al2O3@ YAG: Ce core–shell yellow phosphor for white LED application. Ceram. Int. 44(7), 8435–8439 (2018).

    CAS 

    Google Scholar 

  • Feng, G. et al. A novel green nonaqueous sol-gel process for preparation of partially stabilized zirconia nanopowder. Process. Appl. Ceram. 11(3), 220–224 (2017).

    CAS 

    Google Scholar 

  • Fu, K. L. et al. Study on Mullite Whiskers Preparation via Non-hydrolytic Sol-Gel Process Combined with Molten Salt Method (Trans Tech Publications, Bäch, 2016).

    Google Scholar 

  • Lin, C. et al. Elasto-plastic solution for tunnelling-induced nonlinear responses of overlying jointed pipelines in sand. Tunn. Undergr. Space Technol. 152, 105953 (2024).

    Google Scholar 

  • Hosseini, S. et al. Effect of combination of cationic surfactant and salts on wettability alteration of carbonate rock. Energy Sources, Part A Recovery, Util. Environ. Effects 46(1), 9692–9708 (2024).

    CAS 

    Google Scholar 

  • Tian, K. et al. Effect of amphiphilic CaCO3 nanoparticles on the plant surfactant saponin solution on the oil-water interface: A feasibility research of enhanced oil recovery. Energy Fuels 37(17), 12854–12864 (2023).

    CAS 

    Google Scholar 

  • Abang, G.N.-O., Pin, Y. S. & Ridzuan, N. Application of silica (SiO2) nanofluid and Gemini surfactants to improve the viscous behavior and surface tension of water-based drilling fluids. Egypt. J. Pet. 30(4), 37–42 (2021).

    ADS 

    Google Scholar 

  • Yunita, P., Irawan, S. & Kania, D. Optimization of water-based drilling fluid using non-ionic and anionic surfactant additives. Procedia Eng. 148, 1184–1190 (2016).

    CAS 

    Google Scholar 

  • Bao, Y. et al. Low temperature preparation of aluminum titanate film via sol-gel method. Adv. Mater. Res. 936, 238–242 (2014).

    Google Scholar 

  • Huang, X. et al. Effects of sodium sources on nonaqueous precipitation synthesis of β″-Al2O3 and formation mechanism of uniform ionic channels. Langmuir 41(3), 2044–2052 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Constructing multiple sites porous organic polymers for highly efficient and reversible adsorption of triiodide ion from water. Green Energy Environ. (2025).

  • Sun, L. et al. Ultralight and superhydrophobic perfluorooctyltrimethoxysilane modified biomass carbonaceous aerogel for oil-spill remediation. Chem. Eng. Res. Des. 174, 71–78 (2021).

    CAS 

    Google Scholar 

  • Bhattacharya, S. & Samanta, S. K. Soft-nanocomposites of nanoparticles and nanocarbons with supramolecular and polymer gels and their applications. Chem. Rev. 116(19), 11967–12028 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Mohammed, K. A. et al. Effect of various polymer types on Fe2O3 nanocomposite characteristics: insights from microstructural morphological, optical and band gap analyses. Polym. Bull. 81(15), 13941–13958 (2024).

    CAS 

    Google Scholar 

  • Wan, S. et al. An overview of inorganic polymer as potential lubricant additive for high temperature tribology. Tribol. Int. 102, 620–635 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Parizad, A., Shahbazi, K. & Tanha, A. A. Enhancement of polymeric water-based drilling fluid properties using nanoparticles. J. Petrol. Sci. Eng. 170, 813–828 (2018).

    CAS 

    Google Scholar 

  • Feng, G., Jiang, W.-H. & Liu, J.-M. Luminescent properties of a novel reddish-orange phosphor Eu-activated KLaSiO4. Mater. Sci.-Pol. 37(2), 296–300 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Feng, G. et al. Synthesis and characterization of dense core-shell particles prepared by non-solvent displacement nonaqueous precipitation method taking C@ ZrSiO4 black pigment preparation as the case. Colloid Interface Sci. Commun. 57, 100748 (2023).

    CAS 

    Google Scholar 

  • Feng, G. et al. Non-solvent displacement nonaqueous precipitation method for core-shell materials preparation: Synthesis of C@ ZrSiO4 black pigment. Ceram. Int. 49(23), 38148–38156 (2023).

    CAS 

    Google Scholar 

  • Feng, G. et al. Nonaqueous precipitation combined with intermolecular polycondensation synthesis of novel HAp porous skeleton material and its Pb2+ ions removal performance. Ceram. Int. 50(11), 19757–19768 (2024).

    CAS 

    Google Scholar 

  • Abbood, N. K., Obeidavi, A. & Hosseini, S. Investigation on the effect of CuO nanoparticles on the IFT and wettability alteration at the presence of [C12mim][Cl] during enhanced oil recovery processes. J. Petrol. Explor. Prod. Technol. 12(7), 1855–1866 (2022).

    CAS 

    Google Scholar 

  • Abbood, N. K. et al. Effect of SiO2 nanoparticles + 1-dodecyl-3-methyl imidazolium chloride on the IFT and wettability alteration at the presence of asphaltenic-synthetic oil. J. Petrol. Explor. Prod. Technol. 12(11), 3137–3148 (2022).

    CAS 

    Google Scholar 

  • Negin, C., Ali, S. & Xie, Q. Application of nanotechnology for enhancing oil recovery–a review. Petroleum 2(4), 324–333 (2016).

    Google Scholar 

  • Lashari, N. et al. Impact of a novel HPAM/GO-SiO2 nanocomposite on interfacial tension: Application for enhanced oil recovery. Petrol. Sci. Technol. 40(3), 290–309 (2022).

    CAS 

    Google Scholar 

  • Wang, Y. et al. Injectable polyzwitterionic lubricant for complete prevention of cardiac adhesion. Macromol. Biosci. 23(4), 2200554 (2023).

    CAS 

    Google Scholar 

  • Xu, W. & Liang, J.-Y. Defect-engineered rGO−CoNi2S4 with enhanced electrochemical performance for asymmetric supercapacitor. Trans. Nonferrous Metals Soc. China 35(2), 563–578 (2025).

    Google Scholar 

  • Yang, Q. et al. A smart mitochondria-targeting TP-NIR fluorescent probe for the selective and sensitive sensing of H2S in living cells and mice. New J. Chem. 45(16), 7315–7320 (2021).

    CAS 

    Google Scholar 

  • Yang, Q. et al. Rationally constructed de novo fluorescent nanosensor for nitric oxide detection and imaging in living cells and inflammatory mice models. Anal. Chem. 95(4), 2452–2459 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Rational construction of a fluorescent sensor for simultaneous detection and imaging of hypochlorous acid and peroxynitrite in living cells, tissues and inflammatory rat models. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 282, 121691 (2022).

    CAS 

    Google Scholar 

  • Hatzignatiou, D. G., Giske, N. H. & Stavland, A. Polymers and polymer-based gelants for improved oil recovery and water control in naturally fractured chalk formations. Chem. Eng. Sci. 187, 302–317 (2018).

    CAS 

    Google Scholar 

  • Zhang, C. et al. A novel system for reducing CO2-crude oil minimum miscibility pressure with CO2-soluble surfactants. Fuel 281, 118690 (2020).

    CAS 

    Google Scholar 

  • Drexler, S. et al. Effect of CO2 on the dynamic and equilibrium interfacial tension between crude oil and formation brine for a deepwater pre-salt field. J. Petrol. Sci. Eng. 190, 107095 (2020).

    CAS 

    Google Scholar 

  • Pal, N., Vajpayee, M. & Mandal, A. Cationic/nonionic mixed surfactants as enhanced oil recovery fluids: Influence of mixed micellization and polymer association on interfacial, rheological, and rock-wetting characteristics. Energy Fuels 33(7), 6048–6059 (2019).

    CAS 

    Google Scholar 

  • Henton, D. E. et al. Polylactic acid technology. In Natural Fibers, Biopolymers, and Biocomposites 559–607 (CRC Press, 2005).

    Google Scholar 

  • Davachi, S. M. & Kaffashi, B. Polylactic acid in medicine. Polym.-Plast. Technol. Eng. 54(9), 944–967 (2015).

    CAS 

    Google Scholar 

  • Taghavi Fardood, S. et al. A novel green synthesis of copper oxide nanoparticles using a henna extract powder. J. Struct. Chem. 59, 1737–1743 (2018).

    CAS 

    Google Scholar 

  • Mehrmand, N., Moraveji, M. K. & Parvareh, A. Adsorption of Pb (II), Cu (II) and Ni (II) ions from aqueous solutions by functionalised henna powder (Lawsonia Inermis); isotherm, kinetic and thermodynamic studies. Int. J. Environ. Anal. Chem. 102(1), 1–22 (2022).

    CAS 

    Google Scholar 

  • Ali, J. A. et al. Emerging applications of TiO2/SiO2/poly(acrylamide) nanocomposites within the engineered water EOR in carbonate reservoirs. J. Mol. Liq. 322, 114943 (2021).

    CAS 

    Google Scholar 

  • Wang, Y. et al. Effect of temperature on mineral reactions and fines migration during low-salinity water injection into Berea sandstone. J. Petrol. Sci. Eng. 202, 108482 (2021).

    CAS 

    Google Scholar 

  • Farhadi, H., Ayatollahi, S. & Fatemi, M. The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate. J. Petrol. Sci. Eng. 196, 107862 (2021).

    CAS 

    Google Scholar 

  • Dashtaki, S. R. M. et al. Experimental investigation of the effect of Vitagnus plant extract on enhanced oil recovery process using interfacial tension (IFT) reduction and wettability alteration mechanisms. J. Petrol. Explor. Prod. Technol. 10(7), 2895–2905 (2020).

    Google Scholar 

  • Kamal, M. S., Hussein, I. A. & Sultan, A. S. Review on surfactant flooding: Phase behavior, retention, IFT, and field applications. Energy Fuels 31(8), 7701–7720 (2017).

    CAS 

    Google Scholar 

  • Ali, M. et al. Assessment of wettability and rock-fluid interfacial tension of caprock: Implications for hydrogen and carbon dioxide geo-storage. Int. J. Hydrogen Energy 47(30), 14104–14120 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Yang, W. et al. Effect of surfactant-assisted wettability alteration on immiscible displacement: A microfluidic study. Water Resour. Res. 57(8), e2020WR029522 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Namaee-Ghasemi, A. et al. Geochemical simulation of wettability alteration and effluent ionic analysis during smart water flooding in carbonate rocks: Insights into the mechanisms and their contributions. J. Mol. Liq. 326, 114854 (2021).

    CAS 

    Google Scholar 

  • Al-Saedi, H. N., Flori, R. E. & Brady, P. V. Effect of divalent cations in formation water on wettability alteration during low salinity water flooding in sandstone reservoirs: Oil recovery analyses, surface reactivity tests, contact angle, and spontaneous imbibition experiments. J. Mol. Liq. 275, 163–172 (2019).

    CAS 

    Google Scholar 

  • Khezerloo-ye Aghdam, S., Kazemi, A. & Ahmadi, M. Studying the effect of surfactant assisted low-salinity water flooding on clay-rich sandstones. Petroleum 10(2), 306–318 (2024).

    Google Scholar 

  • Kazemi, A., Khezerloo-ye Aghdam, S. & Ahmadi, M. Theoretical and experimental investigation of the impact of oil functional groups on the performance of smart water in clay-rich sandstones. Sci. Rep. 14(1), 20172 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aghdam, S.K.-Y., Kazemi, A. & Ahmadi, M. Studying the effect of various surfactants on the possibility and intensity of fine migration during low-salinity water flooding in clay-rich sandstones. Results Eng. 18, 101149 (2023).

    CAS 

    Google Scholar 

  • Dong, Z. et al. A novel method for automatic quantification of different pore types in shale based on SEM-EDS calibration. Mar. Petrol. Geol. 173, 107278 (2025).

    Google Scholar 

  • Heidarpour, M. et al. New magnetic nanocomposite Fe3O4@Saponin/Cu(II) as an effective recyclable catalyst for the synthesis of aminoalkylnaphthols via Betti reaction. Steroids 191, 109170 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Asemani, M. & Rabbani, A. R. Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. J. Petrol. Sci. Eng. 185, 106618 (2020).

    CAS 

    Google Scholar 

  • Ovchinnikov, O. V. et al. Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib. Spectrosc. 86, 181–189 (2016).

    CAS 

    Google Scholar 

  • Continue Reading