Graphene-cobalt hexacyanoferrate modified sensor doped with molecularly imprinted polymer for selective potentiometric determination of bupropion

  • Rezk, M. R., Fayed, A. S., Marzouk, H. M. & Abbas, S. S. Potentiometric ion-selective electrodes for determination of cyclopentolate hydrochloride and phenylephrine hydrochloride in their challenging ophthalmic formulation. J. Solid State Electrochem. 22, 3351–3361 (2018).

    CAS 

    Google Scholar 

  • Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. Stability-indicating determination of tedizolid phosphate in the presence of its active form and possible degradants. J. Chromatogr. Sci. 60, 51–60. https://doi.org/10.1093/chromsci/bmab045 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rezk, M. R. & Badr, K. A. Development, optimization and validation of a highly sensitive UPLC–ESI-MS/MS method for simultaneous quantification of amlodipine, Benazeprile and Benazeprilat in human plasma: application to a bioequivalence study. J. Pharm. Biomed. Anal. 98, 1–8 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Rezk, M. R., Basalious, E. B. & Badr, K. A. Novel determination of Sofosbuvir and velpatasvir in human plasma by UPLC–MS/MS method: application to a bioequivalence study. Biomed. Chromatogr. 32, e4347 (2018).

    PubMed 

    Google Scholar 

  • Rezk, M. R., Safa’a, M. R., Khattab, F. I. & Marzouk, H. M. Multi-residues determination of antimicrobials in fish tissues by HPLC–ESI-MS/MS method. J. Chromatog B. 978, 103–110 (2015).

    Google Scholar 

  • Rezk, M. R. & Badr, K. A. Quantification of amlodipine and Atorvastatin in human plasma by UPLC–MS/MS method and its application to a bioequivalence study. Biomed. Chromatogr. 32, e4224 (2018).

    PubMed 

    Google Scholar 

  • Gouda, A. S., Abdel-Megied, A. M., Rezk, M. R. & Marzouk, H. M. LC-MS/MS-based metabolite quantitation of the antiviral prodrug Baloxavir marboxil, a new therapy for acute uncomplicated influenza, in human plasma: application to a human Pharmacokinetic study. J. Pharm. Biomed. Anal. 223, 115165 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Mouhamed, A. A., Eltanany, B. M., Mostafa, N. M. & Nadim, A. H. Development of response surface approach for determination of paracetamol, Chlorpheniramine maleate, caffeine and ascorbic acid by green HPLC method: a desirability-based optimization. J. Chromatogr. Sci. bmae024. https://doi.org/10.1093/chromsci/bmae024 (2024).

  • Hussein, O. G. et al. Arduino-based portable point-of-care colorimetric glucose biosensor using nanozyme with enhanced peroxidase-like activity. Talanta Open, 100519 (2025).

  • Bobacka, J., Ivaska, A. & Lewenstam, A. Potentiometric ion sensors. Chem. Rev. 108, 329–351 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Kadara, R. O., Jenkinson, N. & Banks, C. E. Characterization and fabrication of disposable screen printed microelectrodes. Electrochem. Commun. 11, 1377–1380 (2009).

    CAS 

    Google Scholar 

  • Rezk, M. R., Fayed, A. S., Marzouk, H. M. & Abbas, S. S. Green ion selective electrode potentiometric application for the determination of Cinchocaine hydrochloride in presence of its degradation products and betamethasone valerate: a comparative study of liquid and solid inner contact ion-selective electrode membranes. J. Electrochem. Soc. 164, H628 (2017).

    CAS 

    Google Scholar 

  • Elghobashy, M. R., Mahmoud, A. M., Rezk, M. R. & El-Rahman, M. K. A. Strategy for fabrication of stable Tramadol solid-contact ion-selective potentiometric sensor based on polyaniline nanoparticles. J. Electrochem. Soc. 162, H1–H5 (2014).

    Google Scholar 

  • Bakker, E. & Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Anal. Chem. 24, 199–207 (2005).

    CAS 

    Google Scholar 

  • Fibbioli, M., Morf, W. E., Badertscher, M., de Rooij, N. F. & Pretsch, E. Potential drifts of solid contacted ion selective electrodes due to zero current ion fluxes through the sensor membrane. Electroanalysis 12, 1286–1292 (2000).

    CAS 

    Google Scholar 

  • Hussein, O. G. et al. Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid. RSC Adv. 13, 7645–7655 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fenelon, A. M. & Breslin, C. B. The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties. Electrochim. Acta. 47, 4467–4476 (2002).

    CAS 

    Google Scholar 

  • Mahmoud, A. M., El-Rahman, M. K. A., Elghobashy, M. R. & Rezk, M. R. Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode. J. Electroanal. Chem. 755, 122–126 (2015).

    CAS 

    Google Scholar 

  • Moaaz, E. M., Mahmoud, A., Fayed, A. S., Rezk, M. R. & Abdel-Moety, E. M. Determination of tedizolid phosphate using graphene nanocomposite based solid contact ion selective electrode; green profile assessment by eco-scale and GAPI approach. Electroanalysis 33, 1895–1901. https://doi.org/10.1002/elan.202100067 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mahmoud, A. M., Moaaz, E. M., Rezk, M. R., Abdel-Moety, E. M. & Fayed, A. S. Microfabricated solid‐contact potentiometric sensor for determination of tedizolid phosphate, application to content uniformity testing. Electroanalysis 35, e202200115. https://doi.org/10.1002/elan.202200115 (2023).

    Article 
    CAS 

    Google Scholar 

  • Saad, M. N., Marzouk, H. A. M., Amer, S. M., El-Sherbiny, I. M. & Mahmoud, A. M. Computationally optimized graphene-based electrochemical sensor with enhanced signal stability for the determination of the antimicrobial agent 9-aminoacridine. J. Electrochem. Soc. 171 107511, doi:http://doi.10.1149/-7111/ad8522 (2024). (1945).

  • Brownson, D. A. C. & Banks, C. E. Graphene electrochemistry: an overview of potential applications. Analyst 135, 2768–2778 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Alwarappan, S., Liu, C., Kumar, A. & Li, C. Z. Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J. Phys. Chem. C. 114, 12920–12924 (2010).

    CAS 

    Google Scholar 

  • Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    CAS 

    Google Scholar 

  • Guardia, L. et al. High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49, 1653–1662 (2011).

    CAS 

    Google Scholar 

  • Li, J., Guo, S., Zhai, Y. & Wang, E. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem. Commun. 11, 1085–1088 (2009).

    CAS 

    Google Scholar 

  • Sattarahmady, N., Heli, H. & Moradi, S. E. Cobalt hexacyanoferrate/graphene nanocomposite application for the electrocatalytic oxidation and amperometric determination of Captopril. Sens. Actuators B Chem. 177, 1098–1106 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shan, C. et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378–2382 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Li, T., Yang, M. & Li, H. Label-free electrochemical detection of cancer marker based on graphene-cobalt hexacyanoferrate nanocomposite. J. Electroanal. Chem. 655, 50–55 (2011).

    CAS 

    Google Scholar 

  • Itaya, K., Ataka, T. & Toshima, S. Spectroelectrochemistry and electrochemical Preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 104, 4767–4772 (1982).

    CAS 

    Google Scholar 

  • Fayez, Y. M., Mahmoud, A. M., Morcos, M. N., Goda, Z. M. & Boltia, S. H. Stable Solid-State microfabricated potentiometric sensor based on Chitosan-Prussian blue nanocomposite film for amlodipine selective detection. J Electrochem. Soc (2021).

  • Kulesza, P. J. et al. Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid Cobalt hexacyanoferrate. J. Phys. Chem. B. 102, 1870–1876 (1998).

    CAS 

    Google Scholar 

  • Yang, M. et al. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens. Bioelectron. 21, 1791–1797 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Rebelo, T. S., Almeida, S. A., Guerreiro, J. R. L., Montenegro, M. C. B. & Sales, M. G. F. Trimethoprim-selective electrodes with molecularly imprinted polymers acting as ionophores and potentiometric transduction on graphite solid-contact. Microchem J. 98, 21–28. https://doi.org/10.1016/j.microc.2010.10.006 (2011).

    Article 
    CAS 

    Google Scholar 

  • Cao, Y., Feng, T., Xu, J. & Xue, C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens. Bioelectron. 141, 111447. https://doi.org/10.1016/j.bios.2019.111447 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, H. & Row, K. H. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci. 7, 155–178. https://doi.org/10.3390/i7050155 (2006).

    Article 
    CAS 

    Google Scholar 

  • Wei, Y., Tang, Q., Gong, C. & Lam, M. H. W. Review of the recent progress in photoresponsive molecularly imprinted polymers containing Azobenzene chromophores. Anal. Chim. Acta. 900, 10–20. https://doi.org/10.1016/j.aca.2015.10.022 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, G. et al. Synthesis of molecularly imprinted polymer via emulsion polymerization for application in Solanesol separation. Appl. Sci. 10, 2868. https://doi.org/10.3390/app10082868 (2020).

    Article 
    CAS 

    Google Scholar 

  • Soliman, S. S., Mahmoud, A. M., Elghobashy, M. R., Zaazaa, H. E. & Sedik, G. A. Point-of-care electrochemical sensor for selective determination of date rape drug ketamine based on core-shell molecularly imprinted polymer. Talanta 254, 124151. https://doi.org/10.1016/j.talanta.2022.124151 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wadie, M., Marzouk, H. M., Rezk, M. R., Abdel-Moety, E. M. & Tantawy, M. A sensing platform of molecular imprinted polymer-based polyaniline/carbon paste electrodes for simultaneous potentiometric determination of Alfuzosin and Solifenacin in binary co-formulation and spiked plasma. Anal. Chim. Acta. 1200, 339599. https://doi.org/10.1016/j.aca.2022.339599 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hassan, A. M., Kelani, K. M., Hegazy, M. A. & Tantawy, M. A. Molecular imprinted polymer-based potentiometric approach for the assay of the co-formulated Tetracycline hcl, metronidazole and bismuth subcitrate in capsules and spiked human plasma. Anal. Chim. Acta. 1278, 341707. https://doi.org/10.1016/j.aca.2023.341707 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wadie, M., Abdel-Moety, E. M., Rezk, M. R., Mahmoud, A. M. & Marzouk, H. M. Electro-polymerized poly-methyldopa as a novel synthetic mussel-inspired molecularly imprinted polymeric sensor for darifenacin: computational and experimental study. Appl. Mater. Today. 29, 101595. https://doi.org/10.1016/j.apmt.2022.101595 (2022).

    Article 

    Google Scholar 

  • Saad, M. N. et al. Computationally guided fabrication of Chlorpyrifos electrochemical sensor based on molecularly imprinted polymer decorated with Au nanoparticles. Talanta Open, 100457 (2025).

  • Zhang, J., Wang, Y. & Lu, X. Molecular imprinting technology for sensing foodborne pathogenic bacteria. Anal. Bioanal Chem. 413, 4581–4598. https://doi.org/10.1007/s00216-020-03138-x (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holm, K. J. & Spencer, C. M. Bupropion: a review of its use in the management of smoking cessation. Drugs 59, 1007–1024. https://doi.org/10.2165/00003495-200059040-00019 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lobmaier, P. P., Kunøe, N., Gossop, M. & Waal, H. Naltrexone depot formulations for opioid and alcohol dependence: a systematic review. CNS Neurosci. Ther. 17, 629–636. https://doi.org/10.1111/j.1755-5949.2010.00194.x (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rueda-Clausen, C. F., Padwal, R. S. & Sharma, A. M. New Pharmacological approaches for obesity management. Nat. Rev. Endocrinol. 9, 467–478. https://doi.org/10.1038/nrendo.2013.113 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ch, P. R., Chaitanya, D. & Prasanthi, B. RP-HPLC and spectrophotometric methods for the simultaneous Estimation of bupropion HCl and Naltrexone HCl. Int. J. Pharm. Sci. 6 (7), 2982–2990. https://doi.org/10.13040/IJPSR.0975-8232.6 (2015).

    Article 

    Google Scholar 

  • Srikalyani, V., Tejaswi, M., Srividya, P. & Nalluri, B. N. Simultaneous analysis of Naltrexone hydrochloride and bupropion hydrochloride in bulk and dosage forms by RP-HPLC-PDA method. J. Chem. Pharm. 5, 429–435 (2013).

    Google Scholar 

  • Haritha, A., Kumar, P. B. R., Priya, R. V. & Sekhar, K. Analytical method development and validation for simultaneus Estimation of Naltrexone hydrochloride and bupropion hydrochloride in oral dosage form (tablets) by RP-HPLC techniques. J. Global Trends Pharmaceut Sci. 6, 2600–2606 (2015).

    CAS 

    Google Scholar 

  • Trivedi, A., Dixit, N. & Jhade, D. Modified high performance liquid chromatography analysis for bupropion and Naltrexone in bulk and tablets by using green mobilephase. Res. J. Pharm. Technol. 10, 3317–3322 (2017).

    Google Scholar 

  • Abdel-Gawad, S. A. & El-Gamal, R. M. Simultaneous determination of Naltrexone and bupropion in their co-formulated tablet utilizing green chromatographic approach with application to human urine. Saudi Pharm. J. 26, 169–176. https://doi.org/10.1016/j.jsps.2017.12.014 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. An eco-friendly smartphone based HPTLC method versus conventional densitometric one for determination of Naltrexone and bupropion. BMC Chem. 18, 185. https://doi.org/10.1186/s13065-024-01285-1 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • PATEL, P. & MASTER, S. Development and validation of first order derivative UV spectrophotometric method for simultaneous Estimation of bupropion and Naltrexone in combination. J. Pharm. Res. 26, 1341–1345 (2014).

    Google Scholar 

  • Ramnadh, B. & Vikas, C. Simultaneous Estimation of Naltrexone and bupropion in pharmaceutical dosage form by using UV spectroscopy. World J. Biology Pharm. Health Sci. 1, 033–041. https://doi.org/10.30574/wjbphs.2020.1.1.0005 (2020).

    Article 

    Google Scholar 

  • Ganjali, M., Mizani, F. & Norouzi, P. MWCNTs based carbon paste and PVC membrane potentiometric electrodes for monitoring of bupropion hydrochloride. Int. J. Electrochem. Sci. 7, 7631–7642. https://doi.org/10.1016/S1452-3981(23)15811-1 (2012).

    Article 
    CAS 

    Google Scholar 

  • Saini, R., Doi, S., Jhankal, K. & Sharma, D. Adsorptive stripping voltammetric determination of bupropion in pharmaceuticals. Chem. Sci. Trans. 6, 330–338, doi:http://doi.10.7598/cst1371 (2017). (2017).

  • Jafari, S., Dehghani, M., Nasirizadeh, N., Azimzadeh, M. & Banadaki, F. D. Electrochemical detection of bupropion drug using nanocomposite of molecularly imprinted polyaniline/au nanoparticles/graphene oxide. Bull. Mater. Sci. 44, 56. https://doi.org/10.1007/s12034-020-02348-4 (2021).

    Article 
    CAS 

    Google Scholar 

  • Madej, M. et al. Electrochemical sensing platform based on screen-printed carbon electrode modified with plasma polymerized acrylonitrile nanofilms for determination of bupropion. Microchim Acta. 190, 391. https://doi.org/10.1007/s00604-023-05971-0 (2023).

    Article 
    CAS 

    Google Scholar 

  • Algmaal, S. E., Mahmoud, A. M., Boltia, S. A., El-Saharty, Y. S. & Ghoniem, N. S. Eco-friendly bupropion detection sensor with co-formulated dextromethorphan in AUVELITY tablet and spiked plasma. Sci. Rep. 14, 29305. https://doi.org/10.1038/s41598-024-80227-2 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pena-Pereira, F., Wojnowski, W. & Tobiszewski, M. AGREE—Analytical greenness metric approach and software. Anal. Chem. 92, 10076–10082 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowak, P. M., Wietecha-Posłuszny, R. & Pawliszyn, J. White analytical chemistry: an approach to reconcile the principles of green analytical chemistry and functionality. Trends Analyt Chem. 138, 116223. https://doi.org/10.1016/j.trac.2021.116223 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mansour, F. R., Płotka-Wasylka, J., Locatelli, M. & Modified GAPI (MoGAPI) tool and software for the assessment of method greenness: case studies and applications. Analytica 5, 451–457. https://doi.org/10.3390/analytica5030030 (2024).

    Article 

    Google Scholar 

  • Mahony, J., Nolan, K., Smyth, M. & Mizaikoff, B. Molecularly imprinted polymers—potential and challenges in analytical chemistry. Anal. Chim. Acta. 534, 31–39. https://doi.org/10.1016/j.aca.2004.07.043 (2005).

    Article 
    CAS 

    Google Scholar 

  • Ramnadh, B. & Vikas, C. Simultaneous estimation of naltrexone and bupropion in pharmaceutical dosage form by using UV spectroscopy. WJBPHS 1, 033–041, (2020). https://doi.org/10.30574/wjbphs.2020.1.1.0005

  • Knox, C. et al. CM, DrugBank 6.0: the DrugBank knowledgebase Nucleic Acids Res. 5;52(D1):D1265-D1275., doi: http://doi.10.1093/nar/gkad976 (2024).

  • Wishart, D. S. et al. DrugBank: a comprehensive resource for in Silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Moaaz, E. M., Fayed, A. S., Rezk, M. R. & Abdel-Moety, E. M. Differential pulse voltammetric method for determination of Acemetacin in pharmaceutical formulation using glassy carbon electrode. Anal Bioanal Electrochem (2021).

  • Gemene, K. L., Shvarev, A. & Bakker, E. Selectivity enhancement of anion-responsive electrodes by pulsed chronopotentiometry. Anal. Chim. Acta. 583, 190–196. https://doi.org/10.1016/j.aca.2006.09.042 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alenazi, N. A., Manthorpe, J. M. & Lai, E. P. Selectivity enhancement in molecularly imprinted polymers for binding of bisphenol A. Sensors 16, 1697. https://doi.org/10.3390/s16101697 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arvand, M. & Samie, H. A. A biomimetic potentiometric sensor based on molecularly imprinted polymer for the determination of memantine in tablets. Drug Test. Anal. 5, 461–467. https://doi.org/10.1002/dta.371 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahmoud, A. M., El-Ragehy, N. A., Hegazy, M. A., Tawfik, S. A. & Sedik, G. A. Electrochemical sensor doped with core-shell structured molecularly imprinted polymer proposed for therapeutic drug monitoring of Trazodone hydrochloride. Talanta Open. 11, 100406. https://doi.org/10.1016/j.talo.2025.100406 (2025).

    Article 

    Google Scholar 

  • Moaaz, E. M., Fayed, A. S., Abdel-Moety, E. M. & Rezk, M. R. Innovative sensors with selectivity enhancement by molecularly imprinted polymers for the concurrent quantification of donepezil and memantine. RSC Adv. 15, 18475–18489. https://doi.org/10.1039/d5ra02850g (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical Report). Pure Appl. Chem. 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117 (2015).

    Article 
    CAS 

    Google Scholar 

  • Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023 (1938).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Olivier, J. P. Modeling physical adsorption on porous and nonporous solids using density functional theory. J. Porous Mater. 2, 9–17. https://doi.org/10.1007/BF00486565 (1995).

    Article 
    CAS 

    Google Scholar 

  • Dorkó, Z., Szakolczai, A., Verbić, T. & Horvai, G. Binding capacity of molecularly imprinted polymers and their nonimprinted analogs. J. Sep. Sci. 38, 4240–4247. https://doi.org/10.1002/jssc.201500874 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mousavi, M. P., Abd El-Rahman, M. K., Mahmoud, A. M., Abdelsalam, R. M. & Bühlmann, P. In situ sensing of the neurotransmitter acetylcholine in a dynamic range of 1 nM to 1 mM. ACS Sens. 3, 2581–2589. https://doi.org/10.1021/acssensors.8b00950 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buck, R. P. & Lindner, E. Recommendations for nomenclature of ionselective electrodes (IUPAC recommendations 1994). Pure Appl. Chem. 66, 2527–2536 (1994).

    CAS 

    Google Scholar 

  • Lindner, E. & Umezawa, Y. Performance evaluation criteria for Preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC technical Report). Pure Appl. Chem. 80, 85–104. https://doi.org/10.1351/pac200880010085 (2008).

    Article 
    CAS 

    Google Scholar 

  • Elghobashy, M. R. & Rezk, M. R. Comparative study of different ionophores in ion selective electrodes for stability indicating determination of Moxifloxacin. Anal. Bioanal Electrochem. 6, 461–474 (2014).

    Google Scholar 

  • Hussein, O. G. et al. Potentiometric ion-selective electrode for the determination of antazoline in different formulations and biological fluids using biomimetic receptors. Curr Anal. Chem (2025).

  • Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. Eco-friendly chromatographic methods for determination of Acemetacin and indomethacin; greenness profile assessment. J. AOAC Int. 104, 1485–1491. https://doi.org/10.1093/jaoacint/qsab085 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. Smartphone based TLC approach versus conventional densitometric measurement for the simultaneous determination of donepezil and memantine, content uniformity testing along with greenness and whiteness assessment. Sustain. Chem. Pharm. 42, 101789. https://doi.org/10.1016/j.scp.2024.101789 (2024).

    Article 
    CAS 

    Google Scholar 

  • Moaaz, E. M., Fayed, A. S., Abdel-Moety, E. M. & Rezk, M. R. Molecularly-imprinted polymer-based electrochemical sensor for indirect determination of memantine: greenness and whiteness assessment. J. Electrochem. Soc. 172 https://doi.org/10.1149/1945-7111/adad49 (2025).

  • Mouhamed, A. A., Nadim, A. H., Mostafa, N. M. & Eltanany, B. M. Application of smart chemometric models for spectra resolution and determination of challenging multi-action quaternary mixture: statistical comparison with greenness assessment. BMC Chem. 18, 44 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading