Dysfunctional circular RNA network in major depressive disorder: dissecting the cell identity and potential clinical applications

  • Moreno-Agostino D, Wu Y-T, Daskalopoulou C, Hasan MT, Huisman M, Prina M. Global trends in the prevalence and incidence of depression:a systematic review and meta-analysis. J Affect Disord. 2021;281:235–43.

    PubMed 

    Google Scholar 

  • Penninx BWJH, Milaneschi Y, Lamers F, Vogelzangs N. Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med. 2013;11:129.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. Major depressive disorder. Nat Rev Dis Primers. 2016;2:16065.

    PubMed 

    Google Scholar 

  • Marx W, Penninx BWJH, Solmi M, Furukawa TA, Firth J, Carvalho AF, et al. Major depressive disorder. Nat Rev Dis Primers. 2023;9:44.

    PubMed 

    Google Scholar 

  • Lund C, Brooke-Sumner C, Baingana F, Baron EC, Breuer E, Chandra P, et al. Social determinants of mental disorders and the sustainable development goals: a systematic review of reviews. Lancet Psychiatry. 2018;5:357–69.

    PubMed 

    Google Scholar 

  • Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62.

    CAS 
    PubMed 

    Google Scholar 

  • Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 2016;48:1031–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasic D, Hajek T, Alda M, Uher R. Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: a meta-analysis of family high-risk studies. Schizophr Bull. 2014;40:28–38.

    PubMed 

    Google Scholar 

  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levey DF, Stein MB, Wendt FR, Pathak GA, Zhou H, Aslan M, et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci. 2021;24:954–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry. 2023;28:284–97.

    CAS 
    PubMed 

    Google Scholar 

  • Shi Y, Wang Q, Song R, Kong Y, Zhang Z. Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers. EBioMedicine. 2021;71:103569.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58:870–85.

    CAS 
    PubMed 

    Google Scholar 

  • Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29:481–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    CAS 
    PubMed 

    Google Scholar 

  • Chen L-L, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen L-L. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17:205–11.

    CAS 
    PubMed 

    Google Scholar 

  • Yu C-Y, Kuo H-C. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 2019;26:29.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen L, Huang C, Shan G. Circular RNAs in physiology and non-immunological diseases. Trends Biochem Sci. 2022;47:250–64.

    PubMed 

    Google Scholar 

  • Zhuo C-J, Hou W-H, Jiang D-G, Tian H-J, Wang L-N, Jia F, et al. Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders. Neural Regen Res. 2020;15:817–23.

    CAS 
    PubMed 

    Google Scholar 

  • Najafi S, Aghaei Zarch SM, Majidpoor J, Pordel S, Aghamiri S, Fatih Rasul M, et al. Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol. 2023;225:1038–48.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang Y, Du L, Bai Y, Han B, He C, Gong L, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry. 2020;25:1175–90.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang D, Ji Y, Chen X, Chen R, Wei Y, Peng Q, et al. Peripheral blood circular RNAs as a biomarker for major depressive disorder and prediction of possible pathways. Front Neurosci. 2022;16:844422.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang K, Yang Y, Wang Y, Jiang Z, Fang S. CircPTK2 may be associated with depressive-like behaviors by influencing miR-182-5p. Behav Brain Res. 2024;462:114870.

    CAS 
    PubMed 

    Google Scholar 

  • Codeluppi SA, Xu M, Bansal Y, Lepack AE, Duric V, Chow M, et al. Prefrontal cortex astroglia modulate anhedonia-like behavior. Mol Psychiatry. 2023;28:4632–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Y, Wang F, Teng P, Ku L, Chen L, Feng Y, et al. Accurate identification of circRNA landscape and complexity reveals their pivotal roles in human oligodendroglia differentiation. Genome Biol. 2022;23:48.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li C, Wang H, Tang Y, Wu J. Characterization of the circRNA landscape in interleukin-4 induced anti-inflammatory microglia. Biomedicines. 2023;11:3239.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang C, Sun L, Xiao C, You W, Sun L, Wang S, et al. Circular RNA METTL9 contributes to neuroinflammation following traumatic brain injury by complexing with astrocytic SND1. J Neuroinflammation. 2023;20:39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Curry-Hyde A, Gray LG, Chen BJ, Ueberham U, Arendt T, Janitz M. Cell type-specific circular RNA expression in human glial cells. Genomics. 2020;112:5265–74.

    CAS 
    PubMed 

    Google Scholar 

  • Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer. 2021;20:24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiang T-W, Jhong S-E, Chen Y-C, Chen C-Y, Wu W-S, Chuang T-J. FL-circAS: an integrative resource and analysis for full-length sequences and alternative splicing of circular RNAs with nanopore sequencing. Nucleic Acids Res. 2024;52:D115–D123.

    CAS 
    PubMed 

    Google Scholar 

  • Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 1976;73:3852–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye C-Y, Chen L, Liu C, Zhu Q-H, Fan L. Widespread noncoding circular RNAs in plants. New Phytol. 2015;208:88–95.

    CAS 
    PubMed 

    Google Scholar 

  • Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014;9:1966–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015;16:245.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen L-L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90.

    CAS 
    PubMed 

    Google Scholar 

  • Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions – computational identification, functional validation, and potential clinical applications. Mol Psychiatry. 2025;30:1652–75.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

    CAS 
    PubMed 

    Google Scholar 

  • Knupp D, Cooper DA, Saito Y, Darnell RB, Miura P. NOVA2 regulates neural circRNA biogenesis. Nucleic Acids Res. 2021;49:6849–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Zhang X-O, Chen T, Xiang J-F, Yin Q-F, Xing Y-H, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792–806.

    CAS 
    PubMed 

    Google Scholar 

  • Conn VM, Chinnaiyan AM, Conn SJ. Circular RNA in cancer. Nat Rev Cancer. 2024;24:597–613.

    CAS 
    PubMed 

    Google Scholar 

  • Schmidt CA, Matera AG. tRNA introns: presence, processing, and purpose. Wiley Interdiscip Rev RNA. 2020;11:e1583.

    CAS 
    PubMed 

    Google Scholar 

  • Ngo LH, Bert AG, Dredge BK, Williams T, Murphy V, Li W, et al. Nuclear export of circular RNA. Nature. 2024;627:212–20.

    CAS 
    PubMed 

    Google Scholar 

  • Chen L, Wang Y, Lin J, Song Z, Wang Q, Zhao W, et al. Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs. Nat Commun. 2022;13:5769.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32:639–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet. 2023;24:816–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    CAS 
    PubMed 

    Google Scholar 

  • Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526.

    PubMed 

    Google Scholar 

  • Zhao Y, Zheng R, Chen J, Ning D. CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes to cisplatin resistance in non-small cell lung cancer (NSCLC). Cancer Cell Int. 2020;20:289.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, et al. Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Lett. 2018;426:37–46.

    CAS 
    PubMed 

    Google Scholar 

  • Hall IF, Climent M, Quintavalle M, Farina FM, Schorn T, Zani S, et al. Circ_Lrp6, a circular RNA enriched in vascular smooth muscle cells, acts as a sponge regulating miRNA-145 function. Circ Res. 2019;124:498–510.

    CAS 
    PubMed 

    Google Scholar 

  • Rong Z, Shi S, Tan Z, Xu J, Meng Q, Hua J, et al. Circular RNA CircEYA3 induces energy production to promote pancreatic ductal adenocarcinoma progression through the miR-1294/c-Myc axis. Mol Cancer. 2021;20:106.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Y, Cao P. Circ-Bnc2 alleviates neuroinflammation in LPS-stimulated microglial cells to inhibit neuron cell apoptosis through regulating miR-497a-5p/HECTD1 axis. Brain Behav. 2023;13:e2935.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du WW, Yang W, Chen Y, Wu Z-K, Foster FS, Yang Z, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38:1402–12.

    CAS 
    PubMed 

    Google Scholar 

  • Zhou Z, Ye Q, Ren H, Zhang Y, Han B, Yao H, et al. CircDYM attenuates microglial apoptosis via CEBPB/ZC3H4 axis in LPS-induced mouse model of depression. Int J Biol Macromol. 2024;254:127922.

    CAS 
    PubMed 

    Google Scholar 

  • Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 2017;7:3842–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19:218.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Q, Wang H, Li Z, Li F, Liang L, Zou Y, et al. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J Hepatol. 2022;76:135–47.

    CAS 
    PubMed 

    Google Scholar 

  • Hollensen AK, Thomsen HS, Lloret-Llinares M, Kamstrup AB, Jensen JM, Luckmann M, et al. circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation. eLife. 2020;9:e58478.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.

    PubMed 

    Google Scholar 

  • Chia W, Liu J, Huang Y-G, Zhang C. A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis. 2020;11:372.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li X, Wang J, Zhang C, Lin C, Zhang J, Zhang W, et al. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J Pathol. 2018;246:166–79.

    CAS 
    PubMed 

    Google Scholar 

  • Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66:9–21.e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 is a circular rna that can be translated and functions in myogenesis. Mol Cell. 2017;66:22–37.e9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991;5:2108–16.

    CAS 
    PubMed 

    Google Scholar 

  • Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci. 2017;74:1659–80.

    CAS 
    PubMed 

    Google Scholar 

  • Margvelani G, Maquera KAA, Welden JR, Rodgers DW, Stamm S. Translation of circular RNAs. Nucleic Acids Res. 2025;53:gkae1167.

    PubMed 

    Google Scholar 

  • Wen S-Y, Qadir J, Yang BB. Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol Med. 2022;28:405–20.

    CAS 
    PubMed 

    Google Scholar 

  • Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021;23:278–91.

    CAS 
    PubMed 

    Google Scholar 

  • Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun. 2022;13:3751.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27:626–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, et al. Modulation of circRNA metabolism by m6A modification. Cell Rep. 2020;31:107641.

    PubMed 

    Google Scholar 

  • Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O’Connell MA. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem Sci. 2021;46:758–71.

    CAS 
    PubMed 

    Google Scholar 

  • Welden JR, Margvelani G, Arizaca Maquera KA, Gudlavalleti B, Miranda Sardón SC, Campos AR, et al. RNA editing of microtubule-associated protein tau circular RNAs promotes their translation and tau tangle formation. Nucleic Acids Res. 2022;50:12979–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang J, Shin M-K, Park J, Hwang HJ, Locker N, Ahn J, et al. An interaction between eIF4A3 and eIF3g drives the internal initiation of translation. Nucleic Acids Res. 2023;51:10950–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong L, Liu H-S, Zhou C, Yang X, Huang L, Jie H-Q, et al. A novel protein encoded by circINSIG1 reprograms cholesterol metabolism by promoting the ubiquitin-dependent degradation of INSIG1 in colorectal cancer. Mol Cancer. 2023;22:72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin H-H, Chang C-Y, Huang Y-R, Shen C-H, Wu Y-C, Chang K-L, et al. Exon junction complex mediates the cap-independent translation of circular RNA. Mol Cancer Res. 2023;21:1220–33.

    CAS 
    PubMed 

    Google Scholar 

  • Hwang HJ, Kim YK. Molecular mechanisms of circular RNA translation. Exp Mol Med. 2024;56:1272–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao J, Xu D, Kong Y, Cao Y, Wang L, Hong Y, et al. circFKBP8(5S,6)-encoded protein as a novel endogenous regulator in major depressive disorder by inhibiting glucocorticoid receptor nucleus translocation. Sci Bull. 2024;69:3826–31.

    CAS 

    Google Scholar 

  • Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 2019;26:3444–60.e5.

    CAS 
    PubMed 

    Google Scholar 

  • Wu W, Zhang J, Cao X, Cai Z, Zhao F. Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing. Nat Commun. 2022;13:3242.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res. 2024;19:342–9.

    CAS 
    PubMed 

    Google Scholar 

  • Soutschek M, Schratt G. Non-coding RNA in the wiring and remodeling of neural circuits. Neuron. 2023;111:2140–54.

    CAS 
    PubMed 

    Google Scholar 

  • Rybiczka-Tešulov M, Garritsen O, Venø MT, Wieg L, Dijk RV, Rahimi K, et al. Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development. Nat Commun. 2024;15:6773.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Suenkel C, Cavalli D, Massalini S, Calegari F, Rajewsky N. A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain. Cell Rep. 2020;30:2170–79.e5.

    CAS 
    PubMed 

    Google Scholar 

  • Seeler S, Andersen MS, Sztanka-Toth T, Rybiczka-Tešulov M, van den Munkhof MH, Chang C-C, et al. A circular RNA expressed from the FAT3 locus regulates neural development. Mol Neurobiol. 2023;60:3239–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li W, Shan B, Cheng X, He H, Qin J, Zhao H, et al. circRNA Acbd6 promotes neural stem cell differentiation into cholinergic neurons via the miR-320-5p-Osbpl2 axis. J Biol Chem. 2022;298:101828.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015;18:603–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly D, Bicker S, Winterer J, Nanda P, Germain P-L, Dieterich C, et al. A functional screen uncovers circular RNAs regulating excitatory synaptogenesis in hippocampal neurons. Nat Commun. 2025;16:3040.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giusti SA, Pino NS, Pannunzio C, Ogando MB, Armando NG, Garrett L, et al. A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli. Sci Adv. 2024;10:eadj8769.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmerman AJ, Hafez AK, Amoah SK, Rodriguez BA, Dell’Orco M, Lozano E, et al. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol Psychiatry. 2020;25:2712–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu K, Zhang Y, Xiong W, Zhang Z, Wang Z, Lv L, et al. CircGRIA1 shows an age-related increase in male macaque brain and regulates synaptic plasticity and synaptogenesis. Nat Commun. 2020;11:3594.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheng J, Zhang X, Liang W, Lyu J, Zhang B, Min J, et al. The circular RNA circbabo(5,6,7,8S) regulates lipid metabolism and neuronal integrity via TGF-β/ROS/JNK/SREBP signaling axis in Drosophila. BMC Biol. 2025;23:69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen-Fultheim R, Karmon M, et al. A Parkinson’s disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med. 2020;12:e11942.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong X-P, Liang W, Liu W, Xu S, Li J-L, Tito A, et al. The circular RNA Edis regulates neurodevelopment and innate immunity. PLoS Genet. 2022;18:e1010429.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silenzi V, D’Ambra E, Santini T, D’Uva S, Setti A, Salvi N, et al. A tripartite circRNA/mRNA/miRNA interaction regulates glutamatergic signaling in the mouse brain. Cell Rep. 2024;43:114766.

    CAS 
    PubMed 

    Google Scholar 

  • Wang F, Li Y, Shen H, Martinez-Feduchi P, Ji X, Teng P, et al. Identification of pathological pathways centered on circRNA dysregulation in association with irreversible progression of Alzheimer’s disease. Genome Med. 2024;16:129.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li B, Xi W, Bai Y, Liu X, Zhang Y, Li L, et al. FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke. Nat Commun. 2023;14:489.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui X, Niu W, Kong L, He M, Jiang K, Chen S, et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomark Med. 2016;10:943–52.

    CAS 
    PubMed 

    Google Scholar 

  • Huang R, Zhang Y, Bai Y, Han B, Ju M, Chen B, et al. N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psychiatry. 2020;88:392–404.

    CAS 
    PubMed 

    Google Scholar 

  • Jiang G, Ma Y, An T, Pan Y, Mo F, Zhao D, et al. Relationships of circular RNA with diabetes and depression. Sci Rep. 2017;7:7285.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Song H, Du Y, Zhao Y, Fu Y, Meng Q, et al. CircSYNDIG1 ameliorates stress-induced abnormal behaviors by suppressing miR-344-5p in mice. Brain Res Bull. 2023;195:66–77.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang Y, Huang R, Cheng M, Wang L, Chao J, Li J, et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome. 2019;7:116.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan C, Li Y, Lan T, Wang W, Long Y, Yu SY. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Mol Ther. 2022;30:1300–14.

    CAS 
    PubMed 

    Google Scholar 

  • Li S, Fang Y, Zhang Y, Song M, Zhang X, Ding X, et al. Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep. 2022;41:111532.

    CAS 
    PubMed 

    Google Scholar 

  • Chen X, Cui Q-Q, Hu X-H, Ye J, Liu Z-C, Mei Y-X, et al. CD200 in dentate gyrus improves depressive-like behaviors of mice through enhancing hippocampal neurogenesis via alleviation of microglia hyperactivation. J Neuroinflammation. 2023;20:157.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao Y, Zhang Q, Yan Y, Wang X, Shao Y, Mei C, et al. Antidepressant-like effects of geniposide in chronic unpredictable mild stress-induced mice by regulating the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 networks. Phytother Res. 2023;37:1850–63.

    CAS 
    PubMed 

    Google Scholar 

  • Mao J, Li T, Fan D, Zhou H, Feng J, Liu L, et al. Abnormal expression of rno_circRNA_014900 and rno_circRNA_005442 induced by ketamine in the rat hippocampus. BMC Psychiatry. 2020;20:1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362:181–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu S-H, Du Y, Chen L, Cheng Y. Glial cell abnormalities in major psychiatric diseases: a systematic review of postmortem brain studies. Mol Neurobiol. 2022;59:1665–92.

    CAS 
    PubMed 

    Google Scholar 

  • Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40.

    PubMed 

    Google Scholar 

  • Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA. 1998;95:13290–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu J, Li Y, Huang Y, Liu L, Zhang H, Nagy C, et al. Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat Neurosci. 2023;26:1352–64.

    CAS 
    PubMed 

    Google Scholar 

  • Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K, et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37:222–6.

    CAS 
    PubMed 

    Google Scholar 

  • Yirmiya R. Depressive disorder-associated microglia as a target for a personalized antidepressant approach. Biol Psychiatry. 2023;94:602–4.

    CAS 
    PubMed 

    Google Scholar 

  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang J, Rong P, Zhang L, He H, Zhou T, Fan Y, et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci Adv. 2021;7:eabb9888.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.

    CAS 
    PubMed 

    Google Scholar 

  • Han Q, Li W, Chen P, Wang L, Bao X, Huang R, et al. Microglial NLRP3 inflammasome-mediated neuroinflammation and therapeutic strategies in depression. Neural Regen Res. 2024;19:1890–8.

    CAS 
    PubMed 

    Google Scholar 

  • Song R, Bai Y, Li X, Zhu J, Zhang H, Shi Y, et al. Plasma circular RNA DYM related to major depressive disorder and rapid antidepressant effect treated by visual cortical repetitive transcranial magnetic stimulation. J Affect Disord. 2020;274:486–93.

    CAS 
    PubMed 

    Google Scholar 

  • Ma ZY, Chen F, Xiao P, Zhang XM, Gao XX. Silence of MiR-9 protects depression mice through Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23:4961–70.

    PubMed 

    Google Scholar 

  • Xian X, Cai L-L, Li Y, Wang R-C, Xu Y-H, Chen Y-J, et al. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression. J Nanobiotechnology. 2022;20:122.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu X, Bai Y, Han B, Ju M, Tang T, Shen L, et al. Extracellular vesicle-mediated delivery of circDYM alleviates CUS-induced depressive-like behaviours. J Extracell Vesicles. 2022;11:e12185.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai Y, Ji Y, Liu Y, Zhang D, Gong Z, Li L, et al. Microglial circ-UBE2K exacerbates depression by regulating parental gene UBE2K via targeting HNRNPU. Theranostics. 2024;14:4058–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang H, Chen Z, Zhong Z, Gong W, Li J. Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression. Brain Behav. 2018;8:e01127.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98:239–389.

    CAS 
    PubMed 

    Google Scholar 

  • Freeman MR. Specification and morphogenesis of astrocytes. Science. 2010;330:774–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee H-G, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. 2022;21:339–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64:863–70.

    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: a review of fine neuroanatomical evidence in humans. Glia. 2021;69:2077–99.

    PubMed 

    Google Scholar 

  • Anderson G. Depression pathophysiology: astrocyte mitochondrial melatonergic pathway as crucial hub. Int J Mol Sci. 2022;24:350.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–7.

    CAS 
    PubMed 

    Google Scholar 

  • Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, et al. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy. 2018;14:404–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai Y, Chang D, Ren H, Ju M, Wang Y, Chen B, et al. Engagement of N6-methyladenisine methylation of Gng4 mRNA in astrocyte dysfunction regulated by CircHECW2. Acta Pharm Sin B. 2024;14:1644–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy. 2017;13:1722–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu N, Zheng Y, Liu X, Jia J, Feng J, Zhang C, et al. CircKat6b mediates the antidepressant effect of esketamine by regulating astrocyte function. Mol Neurobiol. 2024;62:2587–2600.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996;274:1133–8.

    CAS 
    PubMed 

    Google Scholar 

  • Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013;16:69–82.

    CAS 
    PubMed 

    Google Scholar 

  • Li Y, Jia Y, Wang D, Zhuang X, Li Y, Guo C, et al. Programmed cell death 4 as an endogenous suppressor of BDNF translation is involved in stress-induced depression. Mol Psychiatry. 2021;26:2316–33.

    CAS 
    PubMed 

    Google Scholar 

  • Shi Y, Song R, Wang Z, Zhang H, Zhu J, Yue Y, et al. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine. 2021;66:103337.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marfil-Marin E, Santamaría-Olmedo M, PerezGrovas-Saltijeral A, Valdes-Flores M, Ochoa-Morales A, Jara-Prado A, et al. circRNA regulates dopaminergic synapse, MAPK, and long-term depression pathways in huntington disease. Mol Neurobiol. 2021;58:6222–31.

    CAS 
    PubMed 

    Google Scholar 

  • Meng P, Zhang X, Liu T-T, Liu J, Luo Y, Xie M-X, et al. A whole transcriptome profiling analysis for antidepressant mechanism of Xiaoyaosan mediated synapse loss via BDNF/trkB/PI3K signal axis in CUMS rats. BMC Complement Med Ther. 2023;23:198.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol. 2010;61:81–109.

    PubMed 

    Google Scholar 

  • Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22:527–36.

    CAS 
    PubMed 

    Google Scholar 

  • Vinkers CH, Kuzminskaite E, Lamers F, Giltay EJ, Penninx BWJH. An integrated approach to understand biological stress system dysregulation across depressive and anxiety disorders. J Affect Disord. 2021;283:139–46.

    CAS 
    PubMed 

    Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–16.

    CAS 
    PubMed 

    Google Scholar 

  • Kim Y-K, Na K-S, Myint A-M, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:277–84.

    CAS 
    PubMed 

    Google Scholar 

  • Zhou S, Chen R, She Y, Liu X, Zhao H, Li C, et al. A new perspective on depression and neuroinflammation: non-coding RNA. J Psychiatr Res. 2022;148:293–306.

    PubMed 

    Google Scholar 

  • Liu C-X, Chen L-L. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185:2016–34.

    CAS 
    PubMed 

    Google Scholar 

  • Fischer JW, Leung AKL. CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol. 2017;52:220–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann LB, Li B, Zhao Q, Wei W, Leighton LJ, Bredy TW, et al. Chronically high stress hormone levels dysregulate sperm long noncoding RNAs and their embryonic microinjection alters development and affective behaviours. Mol Psychiatry. 2024;29:590–601.

    CAS 
    PubMed 

    Google Scholar 

  • Feng X, Jiang B-W, Zhai S-N, Liu C-X, Wu H, Zhu B-Q et al. Circular RNA aptamers targeting neuroinflammation ameliorate Alzheimer disease phenotypes in mouse models. Nat Biotechnol. 2025. https://doi.org/10.1038/s41587-025-02624-w.

  • Lee MY, Kim EY, Kim SH, Cho K-C, Ha K, Kim KP, et al. Discovery of serum protein biomarkers in drug-free patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:60–68.

    PubMed 

    Google Scholar 

  • Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology. 2011;36:2375–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2021;12:911–46.

    CAS 
    PubMed 

    Google Scholar 

  • Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–99.

    CAS 
    PubMed 

    Google Scholar 

  • Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long noncoding RNAs and circular RNAs in autoimmune diseases. Biomolecules. 2020;10:1044.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer. 2021;20:13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu X, Fan Z, Yang T, Li H, Shi Y, Ye L, et al. Plasma circRNA HIPK2 as a putative biomarker for the diagnosis and prediction of therapeutic effects in major depressive disorder. Clin Chim Acta. 2024;552:117694.

    CAS 
    PubMed 

    Google Scholar 

  • Hallford DJ, Sharma MK. Anticipatory pleasure for future experiences in schizophrenia spectrum disorders and major depression: a systematic review and meta-analysis. Br J Clin Psychol. 2019;58:357–83.

    PubMed 

    Google Scholar 

  • Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull. 2017;143:783–822.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuehner C. Why is depression more common among women than among men? Lancet Psychiatry. 2017;4:146–58.

    PubMed 

    Google Scholar 

  • Bu T, Qiao Z, Wang W, Yang X, Zhou J, Chen L, et al. Diagnostic biomarker Hsa_circ_0126218 and functioning prediction in peripheral blood monocular cells of female patients with major depressive disorder. Front Cell Dev Biol. 2021;9:651803.

    PubMed 
    PubMed Central 

    Google Scholar 

  • An T, He Z-C, Zhang X-Q, Li J, Chen A-L, Tan F, et al. Baduanjin exerts anti-diabetic and anti-depression effects by regulating the expression of mRNA, lncRNA, and circRNA. Chin Med. 2019;14:3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng Y, Liu J, Liu P, Teng J. Traditional Chinese exercises on depression: a network meta-analysis. Medicine. 2024;103:e37319.

    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–16.

    PubMed 

    Google Scholar 

  • Zheng Y, He J, Guo L, Yao L, Zheng X, Yang Z, et al. Transcriptome analysis on maternal separation rats with depression-related manifestations ameliorated by electroacupuncture. Front Neurosci. 2019;13:314.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang H, Liu Y, Zhang B, Huang J, Li Y, Yang B, et al. The antidepressant effects and mechanism of action of total saponins from the caudexes and leaves of Panax notoginseng in animal models of depression. Phytomedicine. 2011;18:731–8.

    CAS 
    PubMed 

    Google Scholar 

  • Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, et al. The progress and promise of RNA medicine─an arsenal of targeted treatments. J Med Chem. 2022;65:6975–7015.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu N, Qadir J, Yang BB. CircRNA perspective: new strategies for RNA therapy. Trends Mol Med. 2022;28:343–4.

    CAS 
    PubMed 

    Google Scholar 

  • Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, et al. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res. 2024;9:811–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents. Cell. 2022;185:2806–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ju M, Zhang Z, Gao F, Chen G, Zhao S, Wang D, et al. Intranasal delivery of circATF7IP siRNA via lipid nanoparticles alleviates LPS-induced depressive-like behaviors. Adv Healthc Mater. 2024;13:e2402219.

    PubMed 

    Google Scholar 

  • Gao F, Zhang Z, Ju M, Bian L, Wang H, Zhao S, et al. Therapeutic delivery of circDYM by perillyl alcohol nanoemulsion alleviates LPS-induced depressive-like behaviors. Adv Sci. 2025;12:e2414559.

    Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    CAS 
    PubMed 

    Google Scholar 

  • Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen C-Y, Chu Q, et al. Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat Methods. 2023;20:1159–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li L, Zheng Y-C, Kayani MUR, Xu W, Wang G-Q, Sun P, et al. Comprehensive analysis of circRNA expression profiles in humans by RAISE. Int J Oncol. 2017;51:1625–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu C, Zhang J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 2021;36:109439.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou Z, Han B, Wang Y, Lin N, Zhou Z, Zhang Y, et al. Fast and sensitive multivalent spatial pattern-recognition for circular RNA detection. Nat Commun. 2024;15:10900.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Loan Young T, Chang Wang K, James Varley A, Li B. Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv Drug Deliv Rev. 2023;197:114826.

    CAS 
    PubMed 

    Google Scholar 

  • He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6:185.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai J, Qiu Z, Chi-Shing Cho W, Liu Z, Chen S, Li H, et al. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm. 2024;5:e720.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia S, Feng J, Lei L, Hu J, Xia L, Wang J, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform. 2017;18:984–92.

    CAS 
    PubMed 

    Google Scholar 

  • Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, et al. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat Commun. 2023;14:5327.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.

    CAS 
    PubMed 

    Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999;156:837–41.

    CAS 
    PubMed 

    Google Scholar 

  • Lu C-L, Ren J, Cao X. An astroglial basis of major depressive disorder: molecular, cellular, and circuit features. Biol Psychiatry. 2024. https://doi.org/10.1016/j.biopsych.2024.07.017.

  • Byun YG, Kim N-S, Kim G, Jeon Y-S, Choi JB, Park C-W, et al. Stress induces behavioral abnormalities by increasing expression of phagocytic receptor MERTK in astrocytes to promote synapse phagocytosis. Immunity. 2023;56:2105–20.e13.

    CAS 
    PubMed 

    Google Scholar 

  • Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology. 2023;48:21–36.

    PubMed 

    Google Scholar 

  • Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation. 2022;19:132.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Snijders GJLJ, Sneeboer MAM, Fernández-Andreu A, Udine E, Boks MP, Ormel PR, et al. Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Mol Psychiatry. 2021;26:3336–49.

    CAS 
    PubMed 

    Google Scholar 

  • Scheepstra KWF, Mizee MR, van Scheppingen J, Adelia A, Wever DD, Mason MRJ, et al. Microglia transcriptional profiling in major depressive disorder shows inhibition of cortical gray matter microglia. Biol Psychiatry. 2023;94:619–29.

    CAS 
    PubMed 

    Google Scholar 

  • Böttcher C, Fernández-Zapata C, Snijders GJL, Schlickeiser S, Sneeboer MAM, Kunkel D, et al. Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Transl Psychiatry. 2020;10:310.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagy C, Maitra M, Tanti A, Suderman M, Théroux J-F, Davoli MA, et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat Neurosci. 2020;23:771–81.

    CAS 
    PubMed 

    Google Scholar 

  • Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry. 2021;26:103–17.

    PubMed 

    Google Scholar 

  • Webb CA, Weber M, Mundy EA, Killgore WDS. Reduced gray matter volume in the anterior cingulate, orbitofrontal cortex and thalamus as a function of mild depressive symptoms: a voxel-based morphometric analysis. Psychol Med. 2014;44:2833–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klauser P, Fornito A, Lorenzetti V, Davey CG, Dwyer DB, Allen NB, et al. Cortico-limbic network abnormalities in individuals with current and past major depressive disorder. J Affect Disord. 2015;173:45–52.

    PubMed 

    Google Scholar 

  • Bludau S, Bzdok D, Gruber O, Kohn N, Riedl V, Sorg C, et al. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry. Am J Psychiatry. 2016;173:291–8.

    PubMed 

    Google Scholar 

  • Continue Reading