Atomistic mechanism of non-selective cation permeation in cyclic nucleotide-gated CNGA1 ion channel by molecular dynamics simulations

  • Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    PubMed 

    Google Scholar 

  • Matulef, K. & Zagotta, W. N. Cyclic nucleotide-gated ion channels. Annu Rev. Cell Dev. Biol. 19, 23–44 (2003).

    PubMed 

    Google Scholar 

  • Yau, K. W. & Baylor, D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev. Neurosci. 12, 289–327 (1989).

    PubMed 

    Google Scholar 

  • Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu Rev. Neurosci. 19, 235–263 (1996).

    PubMed 

    Google Scholar 

  • Yau, K. W. & Baylor, D. A. Cyclic GMP-Activated Conductance of Retinal Photoreceptor Cells. Annu. Rev. Neurosci. 12, 289–327 (1989).

    PubMed 

    Google Scholar 

  • Bradley, J., Reisert, J. & Frings, S. Regulation of cyclic nucleotide-gated channels. Curr. Opin. Neurobiol. 15, 343–349 (2005).

    PubMed 

    Google Scholar 

  • Dryja, T. P. et al. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 92, 10177–10181 (1995).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bareil, C. et al. Segregation of a mutation in CNGB1 encoding the β-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum. Genet. 108, 328–334 (2001).

    PubMed 

    Google Scholar 

  • Holmgren, M. Influence of permeant ions on gating in cyclic nucleotide-gated channels. J. Gen. Physiol. 121, 61–72 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kusch, J., Nache, V. & Benndorf, K. Effects of permeating ions and cGMP on gating and conductance of rod-type cyclic nucleotide-gated (CNGA1) channels. J. Physiol. 560, 605–616 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F. & Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature 393, 587–591 (1998).

    PubMed 

    Google Scholar 

  • Yu, F. H., Yarov-Yarovoy, V., Gutman, G. A. & Catterall, W. A. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharm. Rev. 57, 387–395 (2005).

    PubMed 

    Google Scholar 

  • Altomare, C. et al. Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J. Physiol. 549, 347–359 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Craven, K. B. & Zagotta, W. N. CNG and HCN channels: two peas, one pod. Annu Rev. Physiol. 68, 375–401 (2006).

    PubMed 

    Google Scholar 

  • Kaupp, U. B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766 (1989).

    PubMed 

    Google Scholar 

  • Chen, T. Y. et al. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362, 764–767 (1993).

    PubMed 

    Google Scholar 

  • Gerstner, A., Zong, X., Hofmann, F. & Biel, M. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J. Neurosci. 20, 1324–1332 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bönigk, W. et al. The Native Rat Olfactory Cyclic Nucleotide-Gated Channel Is Composed of Three Distinct Subunits. J. Neurosci. 19, 5332–5347 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weitz, D., Ficek, N., Kremmer, E., Bauer, P. J. & Kaupp, U. B. Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 36, 881–889 (2002).

    PubMed 

    Google Scholar 

  • Zheng, J., Trudeau, M. C. & Zagotta, W. N. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36, 891–896 (2002).

    PubMed 

    Google Scholar 

  • Zheng, J. & Zagotta, W. N. Stoichiometry and Assembly of Olfactory Cyclic Nucleotide-Gated Channels. Neuron 42, 411–421 (2004).

    PubMed 

    Google Scholar 

  • Zheng, X., Hu, Z., Li, H. & Yang, J. Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nat. Struct. Mol. Biol. 29, 40–46 (2022).

    PubMed 

    Google Scholar 

  • Peng, C., Rich, E. D. & Varnum, M. D. Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 42, 401–410 (2004).

    PubMed 

    Google Scholar 

  • Li, M. et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542, 60–65 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, X. et al. Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat. Struct. Mol. Biol. 27, 625–634 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Barret, D. C. A., Schertler, G. F. X., Kaupp, U. B. & Marino, J. The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods. Nat. Struct. Mol. Biol. 29, 32–39 (2022).

    PubMed 

    Google Scholar 

  • Xue, J., Han, Y., Zeng, W., Wang, Y. & Jiang, Y. Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron 109, 1302–1313 e1304 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, J., Han, Y., Zeng, W. & Jiang, Y. Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel. Neuron 110, 86–95 e85 (2022).

    PubMed 

    Google Scholar 

  • Contreras, J. E., Srikumar, D. & Holmgren, M. Gating at the selectivity filter in cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. USA 105, 3310–3314 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Napolitano, L. M. R., Torre, V. & Marchesi, A. CNG channel structure, function, and gating: a tale of conformational flexibility. Pflug. Arch. 473, 1423–1435 (2021).

    Google Scholar 

  • Caleman, C. & van der Spoel, D. Picosecond melting of ice by an infrared laser pulse: a simulation study. Angew. Chem. Int Ed. Engl. 47, 1417–1420 (2008).

    PubMed 

    Google Scholar 

  • Flood, E., Boiteux, C., Lev, B., Vorobyov, I. & Allen, T. W. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem. Rev. 119, 7737–7832 (2019).

    PubMed 

    Google Scholar 

  • Oakes, V. & Domene, C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem. Rev. 119, 5998–6014 (2019).

    PubMed 

    Google Scholar 

  • Carnevale, V., Delemotte, L. & Howard, R. J. Molecular Dynamics Simulations of Ion Channels. Trends Biochem Sci. 46, 621–622 (2021).

    PubMed 

    Google Scholar 

  • Elbahnsi, A. et al. Interplay between VSD, pore, and membrane lipids in electromechanical coupling in HCN channels. Elife 12, e80303 (2023).

  • Acharya, A., Jana, K., Gurvic, D., Zachariae, U. & Kleinekathofer, U. Fast prediction of antibiotic permeability through membrane channels using Brownian dynamics. Biophys. J. 122, 2996–3007 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Biedermann, J., Braunbeck, S., Plested, A. J. R., Sun, H. Nonselective cation permeation in an AMPA-type glutamate receptor. Proc. Natl. Acad. Sci. USA 118, e2012843118 (2021).

  • Huang, J. et al. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    PubMed 

    Google Scholar 

  • Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, C. et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput 16, 528–552 (2020).

    PubMed 

    Google Scholar 

  • Kopfer, D. A. et al. Ion permeation in K(+) channels occurs by direct Coulomb knock-on. Science 346, 352–355 (2014).

    PubMed 

    Google Scholar 

  • Kopec, W. et al. Direct knock-on of desolvated ions governs strict ion selectivity in K(+) channels. Nat. Chem. 10, 813–820 (2018).

    PubMed 

    Google Scholar 

  • Burtscher, V. et al. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Nat. Commun. 15, 5216 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Krumbach, J. H. et al. Alkali metal cations modulate the geometry of different binding sites in HCN4 selectivity filter for permeation or block. J. Gen. Physiol 155, e202313364 (2023).

  • Benndorf, K. et al. Subunit-specific conductance of single homomeric and heteromeric HCN pacemaker channels at femtosiemens resolution. Proc. Natl. Acad. Sci. USA 122, e2422533122 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Z. & Yang, J. Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels. Channels (Austin) 17, 2273165 (2023).

    PubMed 

    Google Scholar 

  • Alam, A. & Jiang, Y. Structural analysis of ion selectivity in the NaK channel. Nat. Struct. Mol. Biol. 16, 35–41 (2009).

    PubMed 

    Google Scholar 

  • Alam, A. & Jiang, Y. High-resolution structure of the open NaK channel. Nat. Struct. Mol. Biol. 16, 30–34 (2009).

    PubMed 

    Google Scholar 

  • Shi, C. et al. A single NaK channel conformation is not enough for non-selective ion conduction. Nat. Commun. 9, 717 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Root, M. J. & MacKinnon, R. Two identical noninteracting sites in an ion channel revealed by proton transfer. Science 265, 1852–1856 (1994).

    PubMed 

    Google Scholar 

  • Morrill, J. A. & MacKinnon, R. Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel. J. Gen. Physiol. 114, 71–83 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph 14, 354–360 (1996).

    PubMed 

    Google Scholar 

  • Roy, R. N. et al. Structural plasticity of the selectivity filter in a nonselective ion channel. IUCrJ 8, 421–430 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heiser, F., Biedermann, J., Kuru, E., Plested, A. J. R., Sun, H. Atomistic mechanisms of calcium permeation modulated by Q/R editing and selectivity filter mutations in GluA2 AMPA receptors. Proc. Natl. Acad. Sci. USA 122, e2425172122 (2025).

  • Napolitano, L. M. et al. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels. Proc. Natl. Acad. Sci. USA 112, E3619–E3628 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaki, A. M., Cinaroglu, S. S., Rahman, T., Patel, S. & Biggin, P. C. Plasticity of the selectivity filter is essential for permeation in lysosomal TPC2 channels. Proc. Natl. Acad. Sci. USA 121, e2320153121 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudev, T. & Lim, C. Ion selectivity strategies of sodium channel selectivity filters. Acc. Chem. Res 47, 3580–3587 (2014).

    PubMed 

    Google Scholar 

  • Xue, L., Yan, N. & Song, C. Deciphering Ca(2+) permeation and valence selectivity in Ca(V)1: Molecular dynamics simulations reveal the three-ion knock-on mechanism. Proc. Natl. Acad. Sci. USA 122, e2424694122 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilder, T. A., Corry, B. & Chung, S. H. Multi-ion versus single-ion conduction mechanisms can yield current rectification in biological ion channels. J. Biol. Phys. 40, 109–119 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hui, C., de Vries, R., Kopec, W. & de Groot, B. L. Effective polarization in potassium channel simulations: Ion conductance, occupancy, voltage response, and selectivity. Proc. Natl. Acad. Sci. USA 122, e2423866122 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.8.) (2015).

  • Joung, I. S. & Cheatham, T. E. 3rd. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Berger, O., Edholm, O. & Jahnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72, 2002–2013 (1997).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput Chem. 29, 1859–1865 (2008).

    PubMed 

    Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Google Scholar 

  • Roux, B. The membrane potential and its representation by a constant electric field in computer simulations. Biophys. J. 95, 4205–4216 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gumbart, J., Khalili-Araghi, F., Sotomayor, M. & Roux, B. Constant electric field simulations of the membrane potential illustrated with simple systems. Biochim Biophys. Acta 1818, 294–302 (2012).

    PubMed 

    Google Scholar 

  • Kutzner, C., Grubmuller, H., de Groot, B. L. & Zachariae, U. Computational electrophysiology: The molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophys. J. 101, 809–817 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tieleman, D. P. & Berendsen, H. J. C. Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J. Chem. Phys. 105, 4871–4880 (1996).

    Google Scholar 

  • Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Google Scholar 

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Google Scholar 

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    PubMed 

    Google Scholar 

  • Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Google Scholar 

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Google Scholar 

  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput Chem. 32, 2319–2327 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  • McKinney W. pandas: a Foundational Python Library for Data Analysis and Statistics.) (2011).

  • Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956).

    Google Scholar 

  • Ulmschneider, M. B. et al. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 110, 6364–6369 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph 14, 27–38 (1996).

    Google Scholar 

  • Continue Reading