Petrowsky, H. et al. Modern therapeutic approaches for the treatment of malignant liver tumours. Nat. Rev. Gastroenterol. Hepatol. 17, 755–772 (2020).
Google Scholar
Huang, M., Lu, J. J. & Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 11, 5–13 (2021).
Google Scholar
Attia, A. A. et al. Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich Ascites carcinoma and ameliorates the associated liver damage. Sci. Rep. 12, 1–9 (2022).
Chi, H. et al. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips. Int. J. Biol. Macromol. 221, 1384–1393 (2022).
Google Scholar
Zhou, Y. et al. Rational engineering and insight for a L-glutaminase activity reduced type II L-asparaginase from Bacillus licheniformis and its antileukemic activity in vitro. Int. J. Biol. Macromol. 257, 128690 (2024).
Google Scholar
Barzkar, N., Sohail, M., Tamadoni Jahromi, S., Nahavandi, R. & Khodadadi, M. Marine microbial L-glutaminase: from pharmaceutical to food industry. Appl. Microbiol. Biotechnol. 105, 4453–4466 (2021).
Google Scholar
Debnath, T., Kujur, R. R. A., Mitra, R. & Das, S. K. Diversity of microbes in hot springs and their sustainable use. Microb. Divers. Ecosyst. Sustain. Biotechnol. Appl. Vol. 1. Microb. Divers. Norm. Extrem. Environ. 159–186 (2019).
Haki, G. D. & Rakshit, S. K. Developments in industrially important thermostable enzymes: A review. Bioresour Technol. 89, 17–34 (2003).
Google Scholar
Feller, G. Protein stability and enzyme activity at extreme biological temperatures. J. Phys. Condens. Matter. 22, 323101 (2010).
Google Scholar
Nigam, P. S. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3, 597–611 (2013).
Google Scholar
Sanchez, S. & Demain, A. L. Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process. Res. Dev. 15, 224–230 (2011).
Kumar, A., Mukhia, S. & Kumar, R. Industrial applications of cold-adapted enzymes: Challenges, innovations and future perspective. 3 Biotech. 11, 426 (2021).
Google Scholar
Lukey, M. J., Wilson, K. F. & Cerione, R. A. Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med. Chem. 5, 1685–1700 (2013).
Google Scholar
Nguyen, H. A., Su, Y. & Lavie, A. Design and characterization of erwinia chrysanthemi L-asparaginase variants with diminished L-glutaminase activity. J. Biol. Chem. 291, 17664–17676 (2016).
Google Scholar
Orabi, H., El-Fakharany, E., Abdelkhalek, E. & Sidkey, N. Production, optimization, purification, characterization, and anti-cancer application of extracellular L-glutaminase produced from the marine bacterial isolate. Prep Biochem. Biotechnol. 50, 408–418 (2020).
Google Scholar
Maurya, D. K., Kumar, A., Chaurasiya, U., Hussain, T. & Singh, S. K. Modern era of microbial biotechnology: opportunities and future prospects. in Microbiomes and plant health 317–343Elsevier, (2021).
Fidelito, G. et al. Multi-substrate metabolic tracing reveals marked heterogeneity and dependency on fatty acid metabolism in human prostate cancer. Mol. Cancer Res. 21, 359–373 (2023).
Google Scholar
Pandian, S. R. K., Deepak, V., Nellaiah, H. & Sundar, K. PEG–PHB-glutaminase nanoparticle inhibits cancer cell proliferation in vitro through glutamine deprivation. Vitr Cell. Dev. Biol. 51, 372–380 (2015).
Kuo, M. T., Chen, H. H. W., Feun, L. G. & Savaraj, N. Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals 14, 72 (2021).
Google Scholar
Carneiro, B. A. & El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17, 395–417 (2020).
Google Scholar
Elmetwalli, A. et al. Diarylheptanoids/sorafenib as a potential anticancer combination against hepatocellular carcinoma: the p53/MMP9 axis of action. Naunyn Schmiedebergs Arch. Pharmacol 1–17 (2023).
Matés, J. M. et al. Metabolic reprogramming of cancer by chemicals that target glutaminase isoenzymes. Curr. Med. Chem. 27, 5317–5339 (2020).
Google Scholar
Kao, T. W., Chuang, Y. C., Lee, H. L., Kuo, C. C. & Shen, Y. A. Therapeutic targeting of Glutaminolysis as a novel strategy to combat cancer stem cells. Int. J. Mol. Sci. 23, 15296 (2022).
Google Scholar
Kumar, M. et al. Identification of small molecule inhibitors of RAD52 for breast cancer therapy: in Silico approach. J. Biomol. Struct. Dyn. 42, 4605–4618 (2024).
Google Scholar
Gupta, D. et al. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int J. Biol. Macromol 130913 (2024).
Gupta, D. et al. Identification of polypharmacological anticancerous molecules against Aurora kinase family of proteins. J. Cell. Biochem. 123, 719–735 (2022).
Google Scholar
Agu, P. C. et al. Molecular Docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 13, 13398 (2023).
Google Scholar
Elmetwalli, A. et al. Evaluation of Bacillus Aryabhattai B8W22 peroxidase for phenol removal in waste water effluents. BMC Microbiol. 23, 1–13 (2023).
Hasan, S. F., Elsoud, M. M. A., Sidkey, N. M. & Elhateir, M. M. Production and characterization of polyhydroxybutyrate bioplastic precursor from Parageobacillus toebii using low-cost substrates and its potential antiviral activity. Int J. Biol. Macromol 129915 (2024).
El-Hadedy, D. E., MH, S., HH, E. & Mm, S. Enhanced production of extracellular L-methioninase by entire cell immobilization of streptomyces MDMMH4 and examination of its utilization as an antioxidant agent. Pak J. Pharm. Sci 36, (2023).
Abellan-Schneyder, I. et al. Primer, pipelines, parameters: Issues in 16S rRNA gene sequencing. Msphere 6, 10–1128 (2021).
Abdallah, N. A., Amer, S. K. & Habeeb, M. K. Production, purification and characterization of L-glutaminase enzyme from streptomyces avermitilis. Afr. J. Microbiol. Res. 14, 1184–1190 (2013).
Katikala, P. K., Bobbarala, V., Tadimalla, P. & Guntuku, G. S. Screening of L-glutaminase producing marine bacterial cultures for extracellular production of L-glutaminase. Int. J. ChemTech Res. 1, 1232–1235 (2009).
Jayabalan, R. et al. Extracellular L-glutaminase production by marine brevundimonas diminuta MTCC 8486. Int. J. Appl. Bioeng. 4, 19–24 (2010).
Reda, F. M. Kinetic properties of streptomyces Canarius L-Glutaminase and its anticancer efficiency. Brazilian J. Microbiol. 46, 957–968 (2015).
El-Sewedy, T. et al. Hepatocellular carcinoma cells: Activity of amygdalin and Sorafenib in targeting ampk/mtor and BCL-2 for anti-angiogenesis and apoptosis cell death. BMC Complement. Med. Ther. 23, 1–17 (2023).
Elmetwalli, A. et al. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment. Med. Oncol. 41, 106 (2024).
Google Scholar
El-Shehawy, A. A. et al. Thymoquinone, piperine, and Sorafenib combinations attenuate liver and breast cancers progression: Epigenetic and molecular Docking approaches. BMC Complement. Med. Ther. 23, 1–21 (2023).
Al Balawi, A. N., Eldiasty, J. G., Mosallam, S. A. E. R., El-Alosey, A. R. & Elmetwalli, A. Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in Silico study. Bioresour Bioprocess. 11, 108 (2024).
Google Scholar
Vilar, S., Cozza, G. & Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular Docking to drug discovery. Curr. Top. Med. Chem. 8, 1555–1572 (2008).
Google Scholar
Bewick, V., Cheek, L. & Ball, J. Statistics review 9: One-way analysis of variance. Crit. Care. 8, 1–7 (2004).
Rafeeq, H. et al. Esterases as emerging biocatalysts: mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol. Appl. Biochem. 69, 2176–2194 (2022).
Google Scholar
Tandon, S., Sharma, A., Singh, S., Sharma, S. & Sarma, S. J. Therapeutic enzymes: Discoveries, production and applications. J. Drug Deliv Sci. Technol. 63, 102455 (2021).
Binod, P. et al. Recent developments in l-glutaminase production and applications–An overview. Bioresour Technol. 245, 1766–1774 (2017).
Google Scholar
Srinivasan, P. et al. Production and purification of laccase by Bacillus sp. using millet husks and its pesticide degradation application. 3 Biotech. 9, 396 (2019).
Google Scholar
Gomaa, E. Z. Production, characterization, and antitumor efficiency of l-glutaminase from halophilic bacteria. Bull. Natl. Res. Cent. 46, 10 (2022).
Mostafa, Y. S. et al. L-glutaminase synthesis by marine Halomonas Meridiana isolated from the red sea and its efficiency against colorectal cancer cell lines. Molecules 26, 1963 (2021).
Google Scholar
Mousumi, D. & Dayanand, A. Production and antioxidant attribute of L-glutaminase from streptomyces enissocaesilis DMQ-24. Int. J. Latest Res. Sci. Technol. 2, 1–9 (2013).
Gehlot, P., Kumar, M. & Pareek, N. Production and purification of glutaminase free L-asparaginase from Lysinibacillus fusiformis and its appraisal in acrylamide mitigation of starchy foods. Mater. Today Proc. 69, 64–73 (2022).
Abhini, K. N., Rajan, A. B., Zuhara, K. F. & Sebastian, D. Response surface methodological optimization of l-asparaginase production from the medicinal plant endophyte acinetobacter baumannii ZAS1. J. Genet. Eng. Biotechnol. 20, 22 (2022).
Google Scholar
Arévalo-Tristancho, E., Díaz, L. E., Cortázar, J. E. & Valero, M. F. Production and characterization of L-Asparaginases of isolated from the Arauca riverbank (Colombia). Open Microbiol. J 13, (2019).
Wang, B., Pei, J., Xu, S., Liu, J. & Yu, J. A glutamine tug-of-war between cancer and immune cells: Recent advances in unraveling the ongoing battle. J. Exp. Clin. Cancer Res. 43, 74 (2024).
Google Scholar
Tang, X. et al. Selective enhanced cytotoxicity of amino acid deprivation for cancer therapy using thermozyme functionalized nanocatalyst. J. Nanobiotechnol. 22, 53 (2024).
Srivastava, N., Srivastava, M., Mishra, P. K., Ramteke, P. W. & Singh, R. L. New and Future Developments in Microbial Biotechnology and Bioengineering: from Cellulose To Cellulase: Strategies To Improve Biofuel Production (Elsevier, 2019).
Ariaeenejad, S. et al. Highly efficient computationally derived novel metagenome α-amylase with robust stability under extreme denaturing conditions. Front. Microbiol. 12, 713125 (2021).
Google Scholar
Banerjee, S., Maiti, T. K. & Roy, R. N. Production, purification, and characterization of cellulase from acinetobacter Junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Ann. Microbiol. 70, 1–16 (2020).
Guajardo, N. & Schrebler, R. A. Upstream and downstream bioprocessing in enzyme technology. Pharmaceutics 16, 38 (2023).
Google Scholar
Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R. & Khaledabad, M. A. Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. Lwt 153, 112449 (2022).
Priyadarshini, A., Sahoo, M. M., Raut, P. R., Mahanty, B. & Sahoo, N. K. Kinetic modelling and process engineering of phenolics microbial and enzymatic biodegradation: a current outlook and challenges. J. Water Process. Eng. 44, 102421 (2021).
Bhatt, P. et al. New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268, 128827 (2021).
Google Scholar
Qeshmi, F. I., Homaei, A., Fernandes, P. & Javadpour, S. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol. Res. 208, 99–112 (2018).
Saleem, R. & Ahmed, S. Characterization of a new L-Glutaminase produced by achromobacter xylosoxidans RSHG1, isolated from an expired hydrolyzed L-Glutamine sample. Catalysts 11, 1262 (2021).
Bagewadi, Z. K. et al. Molecular expression, purification and structural characterization of Recombinant L-Glutaminase from streptomyces Roseolus. Int. J. Biol. Macromol. 273, 133142 (2024).
Google Scholar
Mosallatpour, S., Aminzadeh, S., Shamsara, M. & Hajihosseini, R. Novel halo-and thermo-tolerant Cohnella sp. A01 L-glutaminase: Heterologous expression and biochemical characterization. Sci. Rep. 9, 19062 (2019).
Google Scholar
Beckett, A. & Gervais, D. What makes a good new therapeutic L-asparaginase? World J. Microbiol. Biotechnol. 35, 1–13 (2019).
Akram, F. et al. Abridgement of microbial esterases and their eminent industrial endeavors. Mol Biotechnol 1–17 (2024).
Sodhi, A. S. et al. Insights on sustainable approaches for production and applications of value added products. Chemosphere 286, 131623 (2022).
Google Scholar
Diwan, D. et al. Elsevier,. Microbial cancer therapeutics: A promising approach. in Seminars in cancer biology vol. 86 931–950 (2022).
Sawant, S. S., Patil, S. M., Gupta, V. & Kunda, N. K. Microbes as medicines: Harnessing the power of bacteria in advancing cancer treatment. Int. J. Mol. Sci. 21, 7575 (2020).
Google Scholar
Awad, M. F., El-Shenawy, F. S., El-Gendy, M. M. A. A. & El-Bondkly, E. A. M. Purification, characterization, and anticancer and antioxidant activities of l-glutaminase from Aspergillus versicolor Faesay4. Int. Microbiol. 24, 169–181 (2021).
Google Scholar
Abu-Tahon, M. A. & Isaac, G. S. Purification, characterization and anticancer efficiency of L-glutaminase from Aspergillus flavus. J. Gen. Appl. Microbiol. 65, 284–292 (2019).
Google Scholar
Matés, J. M., Campos-Sandoval, J. A. & de Los Santos-Jiménez, J. M rquez, J. Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett. 467, 29–39 (2019).
Google Scholar
Hassan, F. S. et al. Comprehensive insight into exploring the potential of microbial enzymes in cancer therapy: progress, challenges, and opportunities: A review. Int J. Biol. Macromol 134535 (2024).
Crosby, H. A. & Miller, K. E. Evaluating the analgesic effect of the GLS inhibitor 6-Diazo-5-Oxo-L-Norleucine in vivo. Pharm Pharmacol. Int. J 3, (2016).
Mendiratta, S. S., Sekulic, N., Lavie, A. & Colley, K. J. Specific amino acids in the first fibronectin type III repeat of the neural cell adhesion molecule play a role in its recognition and polysialylation by the polysialyltransferase ST8Sia IV/PST. J. Biol. Chem. 280, 32340–32348 (2005).
Google Scholar
pez-Gil, L., n, C. I., Téllez-Jurado, A., Velasco-Vel zquez, M. A. & Anducho-Reyes, M. A. Identification and analysis of anticancer therapeutic targets from the polysaccharide Krestin (PSK) and polysaccharopeptide (PSP) using inverse Docking. Molecules 29, 5390 (2024).
Mates, J. M. et al. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med. 13, 514–534 (2013).
Google Scholar
Yang, W. H., Qiu, Y., Stamatatos, O., Janowitz, T. & Lukey, M. J. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 7, 790–804 (2021).
Google Scholar
Elmetwalli, A. et al. Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer. Med. Oncol. 41, 38 (2023).
Google Scholar
Youness, A., Kamel, R., Elkasabgy, R. A., Shao, N., Farag, A. & P. & Recent advances in Tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; a comprehensive review. Molecules 26, 1486 (2021).
Cai, Y. et al. Recent advances in anticancer activities and drug delivery systems of tannins. Med. Res. Rev. 37, 665–701 (2017).
Google Scholar
Ghasemian, M. et al. Recent progress in Tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed. Pharmacother. 166, 115328 (2023).
Google Scholar