Revolutionizing cancer treatment with Halomonas Aquamarina L-Glutaminase: insights from in vitro and computational studies

  • Petrowsky, H. et al. Modern therapeutic approaches for the treatment of malignant liver tumours. Nat. Rev. Gastroenterol. Hepatol. 17, 755–772 (2020).

    PubMed 

    Google Scholar 

  • Huang, M., Lu, J. J. & Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 11, 5–13 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Attia, A. A. et al. Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich Ascites carcinoma and ameliorates the associated liver damage. Sci. Rep. 12, 1–9 (2022).

    Google Scholar 

  • Chi, H. et al. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips. Int. J. Biol. Macromol. 221, 1384–1393 (2022).

    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Rational engineering and insight for a L-glutaminase activity reduced type II L-asparaginase from Bacillus licheniformis and its antileukemic activity in vitro. Int. J. Biol. Macromol. 257, 128690 (2024).

    PubMed 

    Google Scholar 

  • Barzkar, N., Sohail, M., Tamadoni Jahromi, S., Nahavandi, R. & Khodadadi, M. Marine microbial L-glutaminase: from pharmaceutical to food industry. Appl. Microbiol. Biotechnol. 105, 4453–4466 (2021).

    PubMed 

    Google Scholar 

  • Debnath, T., Kujur, R. R. A., Mitra, R. & Das, S. K. Diversity of microbes in hot springs and their sustainable use. Microb. Divers. Ecosyst. Sustain. Biotechnol. Appl. Vol. 1. Microb. Divers. Norm. Extrem. Environ. 159–186 (2019).

  • Haki, G. D. & Rakshit, S. K. Developments in industrially important thermostable enzymes: A review. Bioresour Technol. 89, 17–34 (2003).

    PubMed 

    Google Scholar 

  • Feller, G. Protein stability and enzyme activity at extreme biological temperatures. J. Phys. Condens. Matter. 22, 323101 (2010).

    PubMed 

    Google Scholar 

  • Nigam, P. S. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3, 597–611 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez, S. & Demain, A. L. Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process. Res. Dev. 15, 224–230 (2011).

    Google Scholar 

  • Kumar, A., Mukhia, S. & Kumar, R. Industrial applications of cold-adapted enzymes: Challenges, innovations and future perspective. 3 Biotech. 11, 426 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lukey, M. J., Wilson, K. F. & Cerione, R. A. Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med. Chem. 5, 1685–1700 (2013).

    PubMed 

    Google Scholar 

  • Nguyen, H. A., Su, Y. & Lavie, A. Design and characterization of erwinia chrysanthemi L-asparaginase variants with diminished L-glutaminase activity. J. Biol. Chem. 291, 17664–17676 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Orabi, H., El-Fakharany, E., Abdelkhalek, E. & Sidkey, N. Production, optimization, purification, characterization, and anti-cancer application of extracellular L-glutaminase produced from the marine bacterial isolate. Prep Biochem. Biotechnol. 50, 408–418 (2020).

    PubMed 

    Google Scholar 

  • Maurya, D. K., Kumar, A., Chaurasiya, U., Hussain, T. & Singh, S. K. Modern era of microbial biotechnology: opportunities and future prospects. in Microbiomes and plant health 317–343Elsevier, (2021).

  • Fidelito, G. et al. Multi-substrate metabolic tracing reveals marked heterogeneity and dependency on fatty acid metabolism in human prostate cancer. Mol. Cancer Res. 21, 359–373 (2023).

    PubMed 

    Google Scholar 

  • Pandian, S. R. K., Deepak, V., Nellaiah, H. & Sundar, K. PEG–PHB-glutaminase nanoparticle inhibits cancer cell proliferation in vitro through glutamine deprivation. Vitr Cell. Dev. Biol. 51, 372–380 (2015).

    Google Scholar 

  • Kuo, M. T., Chen, H. H. W., Feun, L. G. & Savaraj, N. Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals 14, 72 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carneiro, B. A. & El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17, 395–417 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmetwalli, A. et al. Diarylheptanoids/sorafenib as a potential anticancer combination against hepatocellular carcinoma: the p53/MMP9 axis of action. Naunyn Schmiedebergs Arch. Pharmacol 1–17 (2023).

  • Matés, J. M. et al. Metabolic reprogramming of cancer by chemicals that target glutaminase isoenzymes. Curr. Med. Chem. 27, 5317–5339 (2020).

    PubMed 

    Google Scholar 

  • Kao, T. W., Chuang, Y. C., Lee, H. L., Kuo, C. C. & Shen, Y. A. Therapeutic targeting of Glutaminolysis as a novel strategy to combat cancer stem cells. Int. J. Mol. Sci. 23, 15296 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, M. et al. Identification of small molecule inhibitors of RAD52 for breast cancer therapy: in Silico approach. J. Biomol. Struct. Dyn. 42, 4605–4618 (2024).

    PubMed 

    Google Scholar 

  • Gupta, D. et al. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int J. Biol. Macromol 130913 (2024).

  • Gupta, D. et al. Identification of polypharmacological anticancerous molecules against Aurora kinase family of proteins. J. Cell. Biochem. 123, 719–735 (2022).

    PubMed 

    Google Scholar 

  • Agu, P. C. et al. Molecular Docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 13, 13398 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmetwalli, A. et al. Evaluation of Bacillus Aryabhattai B8W22 peroxidase for phenol removal in waste water effluents. BMC Microbiol. 23, 1–13 (2023).

    Google Scholar 

  • Hasan, S. F., Elsoud, M. M. A., Sidkey, N. M. & Elhateir, M. M. Production and characterization of polyhydroxybutyrate bioplastic precursor from Parageobacillus toebii using low-cost substrates and its potential antiviral activity. Int J. Biol. Macromol 129915 (2024).

  • El-Hadedy, D. E., MH, S., HH, E. & Mm, S. Enhanced production of extracellular L-methioninase by entire cell immobilization of streptomyces MDMMH4 and examination of its utilization as an antioxidant agent. Pak J. Pharm. Sci 36, (2023).

  • Abellan-Schneyder, I. et al. Primer, pipelines, parameters: Issues in 16S rRNA gene sequencing. Msphere 6, 10–1128 (2021).

    Google Scholar 

  • Abdallah, N. A., Amer, S. K. & Habeeb, M. K. Production, purification and characterization of L-glutaminase enzyme from streptomyces avermitilis. Afr. J. Microbiol. Res. 14, 1184–1190 (2013).

    Google Scholar 

  • Katikala, P. K., Bobbarala, V., Tadimalla, P. & Guntuku, G. S. Screening of L-glutaminase producing marine bacterial cultures for extracellular production of L-glutaminase. Int. J. ChemTech Res. 1, 1232–1235 (2009).

    Google Scholar 

  • Jayabalan, R. et al. Extracellular L-glutaminase production by marine brevundimonas diminuta MTCC 8486. Int. J. Appl. Bioeng. 4, 19–24 (2010).

    Google Scholar 

  • Reda, F. M. Kinetic properties of streptomyces Canarius L-Glutaminase and its anticancer efficiency. Brazilian J. Microbiol. 46, 957–968 (2015).

    Google Scholar 

  • El-Sewedy, T. et al. Hepatocellular carcinoma cells: Activity of amygdalin and Sorafenib in targeting ampk/mtor and BCL-2 for anti-angiogenesis and apoptosis cell death. BMC Complement. Med. Ther. 23, 1–17 (2023).

    Google Scholar 

  • Elmetwalli, A. et al. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment. Med. Oncol. 41, 106 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • El-Shehawy, A. A. et al. Thymoquinone, piperine, and Sorafenib combinations attenuate liver and breast cancers progression: Epigenetic and molecular Docking approaches. BMC Complement. Med. Ther. 23, 1–21 (2023).

    Google Scholar 

  • Al Balawi, A. N., Eldiasty, J. G., Mosallam, S. A. E. R., El-Alosey, A. R. & Elmetwalli, A. Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in Silico study. Bioresour Bioprocess. 11, 108 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vilar, S., Cozza, G. & Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular Docking to drug discovery. Curr. Top. Med. Chem. 8, 1555–1572 (2008).

    PubMed 

    Google Scholar 

  • Bewick, V., Cheek, L. & Ball, J. Statistics review 9: One-way analysis of variance. Crit. Care. 8, 1–7 (2004).

    Google Scholar 

  • Rafeeq, H. et al. Esterases as emerging biocatalysts: mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol. Appl. Biochem. 69, 2176–2194 (2022).

    PubMed 

    Google Scholar 

  • Tandon, S., Sharma, A., Singh, S., Sharma, S. & Sarma, S. J. Therapeutic enzymes: Discoveries, production and applications. J. Drug Deliv Sci. Technol. 63, 102455 (2021).

    Google Scholar 

  • Binod, P. et al. Recent developments in l-glutaminase production and applications–An overview. Bioresour Technol. 245, 1766–1774 (2017).

    PubMed 

    Google Scholar 

  • Srinivasan, P. et al. Production and purification of laccase by Bacillus sp. using millet husks and its pesticide degradation application. 3 Biotech. 9, 396 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomaa, E. Z. Production, characterization, and antitumor efficiency of l-glutaminase from halophilic bacteria. Bull. Natl. Res. Cent. 46, 10 (2022).

    Google Scholar 

  • Mostafa, Y. S. et al. L-glutaminase synthesis by marine Halomonas Meridiana isolated from the red sea and its efficiency against colorectal cancer cell lines. Molecules 26, 1963 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mousumi, D. & Dayanand, A. Production and antioxidant attribute of L-glutaminase from streptomyces enissocaesilis DMQ-24. Int. J. Latest Res. Sci. Technol. 2, 1–9 (2013).

    Google Scholar 

  • Gehlot, P., Kumar, M. & Pareek, N. Production and purification of glutaminase free L-asparaginase from Lysinibacillus fusiformis and its appraisal in acrylamide mitigation of starchy foods. Mater. Today Proc. 69, 64–73 (2022).

    Google Scholar 

  • Abhini, K. N., Rajan, A. B., Zuhara, K. F. & Sebastian, D. Response surface methodological optimization of l-asparaginase production from the medicinal plant endophyte acinetobacter baumannii ZAS1. J. Genet. Eng. Biotechnol. 20, 22 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arévalo-Tristancho, E., Díaz, L. E., Cortázar, J. E. & Valero, M. F. Production and characterization of L-Asparaginases of isolated from the Arauca riverbank (Colombia). Open Microbiol. J 13, (2019).

  • Wang, B., Pei, J., Xu, S., Liu, J. & Yu, J. A glutamine tug-of-war between cancer and immune cells: Recent advances in unraveling the ongoing battle. J. Exp. Clin. Cancer Res. 43, 74 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, X. et al. Selective enhanced cytotoxicity of amino acid deprivation for cancer therapy using thermozyme functionalized nanocatalyst. J. Nanobiotechnol. 22, 53 (2024).

    Google Scholar 

  • Srivastava, N., Srivastava, M., Mishra, P. K., Ramteke, P. W. & Singh, R. L. New and Future Developments in Microbial Biotechnology and Bioengineering: from Cellulose To Cellulase: Strategies To Improve Biofuel Production (Elsevier, 2019).

  • Ariaeenejad, S. et al. Highly efficient computationally derived novel metagenome α-amylase with robust stability under extreme denaturing conditions. Front. Microbiol. 12, 713125 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Banerjee, S., Maiti, T. K. & Roy, R. N. Production, purification, and characterization of cellulase from acinetobacter Junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Ann. Microbiol. 70, 1–16 (2020).

    Google Scholar 

  • Guajardo, N. & Schrebler, R. A. Upstream and downstream bioprocessing in enzyme technology. Pharmaceutics 16, 38 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R. & Khaledabad, M. A. Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. Lwt 153, 112449 (2022).

    Google Scholar 

  • Priyadarshini, A., Sahoo, M. M., Raut, P. R., Mahanty, B. & Sahoo, N. K. Kinetic modelling and process engineering of phenolics microbial and enzymatic biodegradation: a current outlook and challenges. J. Water Process. Eng. 44, 102421 (2021).

    Google Scholar 

  • Bhatt, P. et al. New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268, 128827 (2021).

    PubMed 

    Google Scholar 

  • Qeshmi, F. I., Homaei, A., Fernandes, P. & Javadpour, S. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol. Res. 208, 99–112 (2018).

    Google Scholar 

  • Saleem, R. & Ahmed, S. Characterization of a new L-Glutaminase produced by achromobacter xylosoxidans RSHG1, isolated from an expired hydrolyzed L-Glutamine sample. Catalysts 11, 1262 (2021).

    Google Scholar 

  • Bagewadi, Z. K. et al. Molecular expression, purification and structural characterization of Recombinant L-Glutaminase from streptomyces Roseolus. Int. J. Biol. Macromol. 273, 133142 (2024).

    PubMed 

    Google Scholar 

  • Mosallatpour, S., Aminzadeh, S., Shamsara, M. & Hajihosseini, R. Novel halo-and thermo-tolerant Cohnella sp. A01 L-glutaminase: Heterologous expression and biochemical characterization. Sci. Rep. 9, 19062 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beckett, A. & Gervais, D. What makes a good new therapeutic L-asparaginase? World J. Microbiol. Biotechnol. 35, 1–13 (2019).

    Google Scholar 

  • Akram, F. et al. Abridgement of microbial esterases and their eminent industrial endeavors. Mol Biotechnol 1–17 (2024).

  • Sodhi, A. S. et al. Insights on sustainable approaches for production and applications of value added products. Chemosphere 286, 131623 (2022).

    PubMed 

    Google Scholar 

  • Diwan, D. et al. Elsevier,. Microbial cancer therapeutics: A promising approach. in Seminars in cancer biology vol. 86 931–950 (2022).

  • Sawant, S. S., Patil, S. M., Gupta, V. & Kunda, N. K. Microbes as medicines: Harnessing the power of bacteria in advancing cancer treatment. Int. J. Mol. Sci. 21, 7575 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Awad, M. F., El-Shenawy, F. S., El-Gendy, M. M. A. A. & El-Bondkly, E. A. M. Purification, characterization, and anticancer and antioxidant activities of l-glutaminase from Aspergillus versicolor Faesay4. Int. Microbiol. 24, 169–181 (2021).

    PubMed 

    Google Scholar 

  • Abu-Tahon, M. A. & Isaac, G. S. Purification, characterization and anticancer efficiency of L-glutaminase from Aspergillus flavus. J. Gen. Appl. Microbiol. 65, 284–292 (2019).

    PubMed 

    Google Scholar 

  • Matés, J. M., Campos-Sandoval, J. A. & de Los Santos-Jiménez, J. M rquez, J. Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett. 467, 29–39 (2019).

    PubMed 

    Google Scholar 

  • Hassan, F. S. et al. Comprehensive insight into exploring the potential of microbial enzymes in cancer therapy: progress, challenges, and opportunities: A review. Int J. Biol. Macromol 134535 (2024).

  • Crosby, H. A. & Miller, K. E. Evaluating the analgesic effect of the GLS inhibitor 6-Diazo-5-Oxo-L-Norleucine in vivo. Pharm Pharmacol. Int. J 3, (2016).

  • Mendiratta, S. S., Sekulic, N., Lavie, A. & Colley, K. J. Specific amino acids in the first fibronectin type III repeat of the neural cell adhesion molecule play a role in its recognition and polysialylation by the polysialyltransferase ST8Sia IV/PST. J. Biol. Chem. 280, 32340–32348 (2005).

    PubMed 

    Google Scholar 

  • pez-Gil, L., n, C. I., Téllez-Jurado, A., Velasco-Vel zquez, M. A. & Anducho-Reyes, M. A. Identification and analysis of anticancer therapeutic targets from the polysaccharide Krestin (PSK) and polysaccharopeptide (PSP) using inverse Docking. Molecules 29, 5390 (2024).

    Google Scholar 

  • Mates, J. M. et al. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med. 13, 514–534 (2013).

    PubMed 

    Google Scholar 

  • Yang, W. H., Qiu, Y., Stamatatos, O., Janowitz, T. & Lukey, M. J. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 7, 790–804 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmetwalli, A. et al. Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer. Med. Oncol. 41, 38 (2023).

    PubMed 

    Google Scholar 

  • Youness, A., Kamel, R., Elkasabgy, R. A., Shao, N., Farag, A. & P. & Recent advances in Tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; a comprehensive review. Molecules 26, 1486 (2021).

    Google Scholar 

  • Cai, Y. et al. Recent advances in anticancer activities and drug delivery systems of tannins. Med. Res. Rev. 37, 665–701 (2017).

    PubMed 

    Google Scholar 

  • Ghasemian, M. et al. Recent progress in Tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed. Pharmacother. 166, 115328 (2023).

    PubMed 

    Google Scholar 

  • Continue Reading