Multi-fault diagnosis and damage assessment of rolling bearings based on IDBO-VMD and CNN-BiLSTM

  • Chen, X., Yang, R. & Xue, Y. Deep transfer learning for bearing fault diagnosis: A systematic review since 2016. IEEE Trans. 72, 1–21. https://doi.org/10.1109/TIM.2023.3244237 (2023).

    Article 

    Google Scholar 

  • Salunkhe, V. G. et al. A novel incipient fault detection technique for roller bearing using deep independent component analysis and variational modal decomposition. ASME J. Tribol. 145, 7. https://doi.org/10.1115/1.4056899 (2023).

    Article 

    Google Scholar 

  • Zhou, X. et al. Fault diagnosis method of rolling bearing based on improved VMD spectrogram and FCM. Mach. Tools Hydraul. 51, 206–211. https://doi.org/10.1007/s11042-020-09534-w (2023).

    Article 

    Google Scholar 

  • Cheng, X. et al. Gearbox fault diagnosis method based on lightweight channel attention mechanism and transfer learning. Sci. Rep. 14, 743. https://doi.org/10.1038/s41598-023-50826-6 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, X. H., Zhao, M. B., Chow, T. W. S. & Pecht, M. Motor bearing fault diagnosis using trace ratio linear discriminant analysis. 61, 2441–2451. https://doi.org/10.1109/TIE.2013.2273471 (2014).

  • Salunkhe, V. G. & Desavale, R. G. An intelligent prediction for detecting bearing vibration characteristics using a machine learning model. ASME J. Nondestructive Evaluation. 4, 3. https://doi.org/10.1115/1.4049938 (2021).

    Article 

    Google Scholar 

  • Wang, Q., Hu, S. & Wang, X. Detection of incipient rotor unbalance fault based on the RIME-VMD and modified-WKN. Sci. Rep. 14, 4683. https://doi.org/10.1038/s41598-024-54984-z (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mao, M. et al. Application of FCEEMD-TSMFDE and adaptive catboost in fault diagnosis of complex variable condition bearings. Sci. Rep. 14, 30448. https://doi.org/10.1038/s41598-024-78845-x (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, R. Q., Shang, Z. G., Xu, H. & Wen, J. C. Wavelet transform for rotary machine fault diagnosis:10 years revisited. Mech. Syst. Signal. Proc. 00, 110545. https://doi.org/10.1016/j.ymssp.2023.110545 (2023).

    Article 

    Google Scholar 

  • Randall, R. B. & Antoni, J. Why EMD and similar decompositions are of little benefit for bearing diagnostics. Mech. Syst. Signal. Proc. 192, 110207. https://doi.org/10.1016/j.ymssp.2023.110545 (2023).

    Article 

    Google Scholar 

  • Cheng, Y. & Zou, D. Complementary ensemble local means decomposition method and its application to rolling element bearings fault diagnosis. Proc. Inst. Mech. Eng. O 233, 868–880 (2019).

  • Wang, Z., Yang, J. & Guo, Y. Unknown fault feature extraction of rolling bearings under variable speed conditions based on statistical complexity measures. Mech. Syst. Signal. Proc. 72, 108964. https://doi.org/10.1016/j.ymssp.2022.108964 (2022).

    Article 

    Google Scholar 

  • Dragomiretskiy, K. & Zosso, D. Variational mode decomposition. IEEE Trans. Signal. Process. 62, 531–544. https://doi.org/10.1109/TSP.2013.2288675 (2013).

    Article 
    MathSciNet 

    Google Scholar 

  • Zhang, S., Wang, Y. & He, S. Bearing fault diagnosis based on variational mode decomposition and total variation denoising. Meas. Sci. Technol. 27, 075101. https://doi.org/10.1088/0957-0233/27/7/075101 (2016).

    Article 

    Google Scholar 

  • Li, K., Su, L., Wu, J. & Wang, H. A. Rolling bearing fault diagnosis method based on variational mode decomposition and an improved kernel extreme learning machine. Appl. Sci. 7, 1004. https://doi.org/10.3390/app7101004 (2017).

    Article 

    Google Scholar 

  • Yuan, Y. et al. Noise reduction and feature enhancement of hob vibration signal based on parameter adaptive VMD and autocorrelation analysis. Meas. Sci. Technol. 33, 125116. https://doi.org/10.1088/1361-6501/ac8e23 (2022).

    Article 

    Google Scholar 

  • Xing, Y. & Jian, R. Features method for selecting VMD parameters based on spectrum without modal overlap. J. Phys. Conf. Ser. 1605, 012002. https://doi.org/10.1088/1742-6596/1605/1/012002 (2020).

    Article 

    Google Scholar 

  • Zhong, X., Xia, T. & Mei, Q. An effective centre frequency selection scheme based on variational mode extraction and its application to gear fault diagnosis. Insight-Non-Destructive Test. Condition Monit. 64, 155–163. https://doi.org/10.1784/insi.2022.64.3.155 (2022).

    Article 

    Google Scholar 

  • Li, H., Liu, T., Wu, X. & Chen, Q. An optimized VMD method and its applications in bearing fault diagnosis. Meas 166, 108185. https://doi.org/10.1016/j.measurement.2020.108 (2020).

    Article 

    Google Scholar 

  • Zhang, X., Miao, Q., Zhang, H. & Wang, L. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery. Mech. Syst. Signal. Proc. 108, 58–72. https://doi.org/10.1016/j.ymssp.2017.11.029 (2018).

    Article 

    Google Scholar 

  • Jin, Z., He, D. & Wei, Z. Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN. Eng. Appl. Artif. Intell. 110, 104713. https://doi.org/10.1016/j.engappai.2022.104713 (2022).

    Article 

    Google Scholar 

  • Wang, X. et al. Fault diagnosis method of rolling bearing based on SSA-VMD and RCMDE. Sci. Rep. 14, 30637. https://doi.org/10.1038/s41598-024-81262-9 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, J., Liu, G. & Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE-CAA J. AUTOMATIC. 8 (10), 1627–1643. https://doi.org/10.1109/JAS.2021.1004129 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Xue, J. & Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 79, 7305–7336. https://doi.org/10.1007/s11227-022-04959-6 (2023).

    Article 

    Google Scholar 

  • Kong, W. et al. PID control algorithm based on multistrate-gy enhanced Dung beetle optimizer and back propagation neural network for DC motor control. Sci. Rep. 14, 28276. https://doi.org/10.1038/s41598-024-79653-z (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, X., He, Z. & Jia, C. Multi-strategy cooperative enhancement Dung beetle optimizer and its application in obstacle avoidance navigation. Sci. Rep. 14, 28041. https://doi.org/10.1038/s41598-024-79420-0 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. A review on convolutional neural network in rolling bearing fault diagnosis. Meas. Sci. Technol. 35, 1. https://doi.org/10.1088/1361-6501/ad356e (2024).

    Article 

    Google Scholar 

  • Salunkhe, V. G. et al. Vibration dynamic analysis of the bearing parameters in steam turbine bearing systems in sugar refinery. ASME J. Tribol. 148, 13. https://doi.org/10.1115/1.4068559 (2025).

    Article 

    Google Scholar 

  • Ruan, D. W., Han, J. Z., Yan, J. P. & Guehmann, C. Light convolutional neural network by neural architecture search and model pruning for bearing fault diagnosis and remaining useful life prediction. Sci. Rep. 13, 1. https://doi.org/10.1038/s41598-023-31532 (2023).

    Article 

    Google Scholar 

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Choudhary, A., Mian, T. & Fatima, S. Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images. Meas 176, 109196. https://doi.org/10.1016/j.measurement.2021.109196 (2021).

    Article 

    Google Scholar 

  • Tang, G., Zhou, Y., Wang, H. & Li, G. Prediction of bearing performance degradation with bottleneck feature based on LSTM network. IEEE Int. Inst. Meas. Tec. Conf. 1–6. https://doi.org/10.1109/I2MTC.2018.8409564 (2018).

  • Guo, Y., Mao, J. & Zhao, M. Rolling bearing fault diagnosis method based on attention CNN and BiLSTM network. Neural Process. Lett. 55, 3377–3410. https://doi.org/10.1007/s11063-022-11013-2 (2023).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Attention activation network for bearing fault diagnosis under various noise environments. Sci. Rep. 15, 977. https://doi.org/10.1038/s41598-025-85275-w (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salunkhe, V. G. et al. Rolling element bearing fault diagnosis by the implementation of Elman neural networks with long Short-Term memory strategy. ASME J. Tribol. 147, 8. https://doi.org/10.1115/1.4067382 (2025).

    Article 

    Google Scholar 

  • Saeed, A., Khan, A. & Akram, M. Deep learning based approaches for intelligent industrial machinery health management and fault diagnosis in resource-constrained environments. Sci. Rep. 15, 1114. https://doi.org/10.1038/s41598-024-79151-2 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X., Zhang, B. & Gao, D. Bearing fault diagnosis base on multi-scale CNN and LSTM model. J. Intell. Manuf. 32, 971–987. https://doi.org/10.1007/s10845-020-01600-2 (2021).

    Article 

    Google Scholar 

  • Nacer, S. M. et al. A novel method for bearing fault diagnosis based on BiLSTM neural networks. Int. J. Adv. Manuf. Technol. 125, 1477–1492. https://doi.org/10.1007/s00170-022-10792-1 (2023).

    Article 

    Google Scholar 

  • Salunkhe, V. G. et al. Unbalance bearing fault identification using highly accurate Hilbert–Huang transform approach. J. Nondestr Eval Diag. 6, 3. https://doi.org/10.1115/1.4062929 (2023).

    Article 

    Google Scholar 

  • Yıldız, B. S., Kumar, S., Pholdee, N. & Yildiz, A. R. A new chaotic lévy flight distribution optimization algorithm for solving constrained engineering problems. Expert Syst. Appl. 39, 12992. https://doi.org/10.1111/exsy.12992 (2022).

    Article 

    Google Scholar 

  • Tanyildizi, E. & Demir, G. Golden sine algorithm: A novel Math-Inspired algorithm. Adv. Electr. Comput. Eng. 17, 71–78. https://doi.org/10.4316/AECE.2017.02010 (2017).

    Article 

    Google Scholar 

  • Seyedali, M. SCA: A sine cosine algorithm for solving optimization problems. KNOWL-BASED SYST. 96, 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 (2016).

    Article 

    Google Scholar 

  • Ghasemi, M., Zare, M. & Trojovský, P. Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm. Knowl.-Based Syst. 295, 111850. https://doi.org/10.1016/j.knosys.2024.111850 (2024).

    Article 

    Google Scholar 

  • Amiri, M. H. et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Sci. Rep. 14, 5032. https://doi.org/10.1038/s41598-024-54910-3 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xin, Y., Yong, L. & Guang, L. Evolutionary programming made faster. 3, 102. https://doi.org/10.1109/4235.771163 (1999).

  • Wang, Y. H. et al. Degradation trend prediction of hydropower units based on a comprehensive deterioration index and LSTM. Energies 15, 6273. https://doi.org/10.3390/en15176273 (2022).

  • Jiang, Z. et al. A fault detection of aero-engine rolling bearings based on CNN-BiLSTM network integrated cross-attention. Meas. Sci. Technol. 35, 12 (2014).

  • Dao, F. et al. Wear fault diagnosis in hydro-turbine via the incorporation of the IWSO algorithm optimized CNN-LSTM neural network. Sci. Rep. 14, 25278. https://doi.org/10.1038/s41598-024-77251-7 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. An improved sparrow search algorithm and CNN-BiLSTM neural network for predicting sea level height. Sci. Rep. 14, 4560. https://doi.org/10.1038/s41598-024-55266-4 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salunkhe, V. G. et al. An integrated dimension theory and modulation signal bispectrum technique for analyzing bearing fault in industrial fibrizer. J. Nondestr Eval Diag. 7, 3. https://doi.org/10.1115/1.4065545 (2024).

    Article 

    Google Scholar 

  • Song, Q. et al. Fault diagnosis of HVCB via the Subtraction average based optimizer algorithm optimized multi channel CNN-SABO-SVM network. Sci. Rep. 14, 29507. https://doi.org/10.1038/s41598-024-80954-6 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, Q. et al. Feature decoupling integrated domain generalization network for bearing fault diagnosis under unknown operating conditions. Sci. Rep. 14, 30848. https://doi.org/10.1038/s41598-024-81489-6 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, C., Zio, E. & Shen, W. Domain generalization for Cross-Domain fault diagnosis: an Application-oriented perspective and a benchmark study. Reliab. Eng. Syst. Safe. 245, 109964. https://doi.org/10.1016/j.ress.2024.109964 (2024).

    Article 

    Google Scholar 

  • Jagadeesha, T. et al. Investigation of Crack Detection Technique in a Rotating Shaft by Using Vibration Measurement 631–645. https://doi.org/10.1007/978-981-15-4739-3_54 (AIME, 2021).

  • Song, J. et al. Reliability analysis of gear-bearing drive systems considering gear manufacturing and installation errors. Sci. Rep. 15, 23301. https://doi.org/10.1038/s41598-025-06446-3 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salunkhe, V. G., Desavale, R. G. & Jagadeesha, T. A numerical model for fault diagnosis in deep groove ball bearing using dimension theory. Mater. Today Proc. 47, 3077–3084. https://doi.org/10.1016/j.matpr.2021.06.072 (2021).

  • Continue Reading