Heldstab, S. A. et al. Manipulation complexity in primates coevolved with brain size and terrestriality. Sci. Rep. 6, 24528 (2016).
Google Scholar
Kivell, T. L. Evidence in hand: recent discoveries and the early evolution of human manual manipulation. Philosoph. Transac. Royal Soc. B: Biol. Sci. 370, https://doi.org/10.1098/rstb.2015.0105 (2015).
Roach, N. T., Venkadesan, M., Rainbow, M. J. & Lieberman, D. E. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 498, 483–486 http://www.nature.com/nature/journal/v498/n7455/abs/nature12267.html#supplementary-information (2013).
Google Scholar
Karakostis, F. A. et al. Biomechanics of the human thumb and the evolution of dexterity. Curr. Biol. 31, 1317–1325.e1318 (2021).
Google Scholar
Iwaniuk, A. N., Pellis, S. M. & Whishaw, I. Q. Brain size is not correlated with forelimb dexterity in fissiped carnivores (Carnivora): a comparative test of the principle of proper mass. Brain Behav. Evolution 54, 167–180 (1999).
Google Scholar
Toth, N., Schick, K. D., Savage-Rumbaugh, E. S., Sevcik, R. A. & Rumbaugh, D. M. Pan the tool-maker: investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). J. Archaeological Sci. 20, 81–91 (1993).
Cunningham, C. L., Anderson, J. R. & Mootnick, A. R. Object manipulation to obtain a food reward in hoolock gibbons, Bunopithecus hoolock. Anim. Behav. 71, 621–629 (2006).
Byrne, R. W., Corp, N. & Byrne, J. M. Manual dexterity in the gorilla: bimanual and digit role differentiation in a natural task. Anim. Cognition 4, 347–361 (2001).
Google Scholar
van Schaik, C. P., Fox, E. A. & Fechtman, L. T. Individual variation in the rate of use of tree-hole tools among wild orang-utans: implications for hominin evolution. J. Hum. evolution 44, 11–23 (2003).
Ottoni, E. B. & Izar, P. Capuchin monkey tool use: Overview and implications. Evolut. Anthropol.: Issues, N., Rev. 17, 171–178 (2008).
Lefebvre, L. Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front. Hum. Neurosci. 7, 245 (2013).
Google Scholar
Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. 99, 4436–4441 (2002).
Google Scholar
Iwaniuk, A. N., Lefebvre, L. & Wylie, D. R. The comparative approach and brain–behaviour relationships: A tool for understanding tool use. Can. J. Exp. Psychol./Rev. canadienne de. psychologie expérimentale 63, 150 (2009).
Parker, S. T. & Gibson, K. R. Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in Cebus monkeys and great apes. J. Hum. Evolution 6, 623–641 (1977).
Melin, A. D., Young, H. C., Mosdossy, K. N. & Fedigan, L. M. Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence. J. Hum. Evolution 71, 77–86 (2014).
Heldstab, S. A., Isler, K., Schuppli, C. & van Schaik, C. P. When ontogeny recapitulates phylogeny: Fixed neurodevelopmental sequence of manipulative skills among primates. Sci. Adv. 6, eabb4685 (2020).
Google Scholar
Marzke, M. W. Tool making, hand morphology and fossil hominins. Philosoph. Transac. Royal Soc. B: Biol. Sci. 368, https://doi.org/10.1098/rstb.2012.0414 (2013).
Marzke, M. W. Precision grips, hand morphology, and tools. Am. J. Phys. Anthropol. 102, 91–110 (1997).
Google Scholar
Almécija, S., Wallace, I. J., Judex, S., Alba, D. M. & Moyà-Solà, S. Comment on “Human-like hand use in Australopithecus africanus. Science 348, 1101 (2015).
Google Scholar
Bardo, A., Vigouroux, L., Kivell, T. L. & Pouydebat, E. The impact of hand proportions on tool grip abilities in humans, great apes and fossil hominins: A biomechanical analysis using musculoskeletal simulation. J. Hum. Evolution 125, 106–121 (2018).
Pouydebat, E., Laurin, M., Gorce, P. & Bels, V. Evolution of grasping among anthropoids. J. Evolut. Biol. 21, 1732–1743 (2008).
Google Scholar
Melin, A. D. et al. Anatomy and dietary specialization influence sensory behaviour among sympatric primates. Proc. R. Soc. B: Biol. Sci. 289, 20220847 (2022).
Feix, T., Kivell, T. L., Pouydebat, E. & Dollar, A. M. Estimating thumb–index finger precision grip and manipulation potential in extant and fossil primates. J. Royal Soc. Interface 12, https://doi.org/10.1098/rsif.2015.0176 (2015).
Napier, J. The evolution of the hand. Sci. Am. 207, 56–65 (1962).
Google Scholar
Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P. & Berger, L. R. Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333, 1411–1417 (2011).
Google Scholar
Almécija, S., Smaers, J. B. & Jungers, W. L. The evolution of human and ape hand proportions. Nat. Commun. 6, https://doi.org/10.1038/ncomms8717 (2015).
Almécija, S., Moyà-Solà, S. & Alba, D. M. Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE 5, e11727 (2010).
Google Scholar
Venditti, C., Baker, J. & Barton, R. A. Co-evolutionary dynamics of mammalian brain and body size. Nat. Ecol. Evolution 8, 1534–1542 (2024).
Susman, R. L. Fossil evidence for early hominid tool use. Science 265, 1570–1573 (1994).
Google Scholar
Organ, C., Nunn, C. L., Machanda, Z. & Wrangham, R. W. Phylogenetic rate shifts in feeding time during the evolution of Homo. Proc. Natl Acad. Sci. USA 108, 14555–14559 (2011).
Google Scholar
Organ, C. L., Shedlock, A. M., Meade, A., Pagel, M. & Edwards, S. V. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–184 (2007).
Google Scholar
Bentley-Condit, V. Animal tool use: current definitions and an updated comprehensive catalog. Behaviour 147, 185–132A (2010).
St Amant, R. & Horton, T. E. Revisiting the definition of animal tool use. Anim. Behav. 75, 1199–1208 (2008).
Shumaker, R. W., Walkup, K. R. & Beck, B. B. Animal tool behavior: the use and manufacture of tools by animals. (JHU Press, 2011).
Beck, B. B. Animal tool behavior: The use and manufacture of tools by animals. (No Title) (1980).
Skinner, M. M. et al. Human-like hand use in Australopithecus africanus. Science 347, 395–399 (2015).
Google Scholar
Şahin, F., Atalay, N. Ş, Akkaya, N. & Aksoy, S. Factors affecting the results of the functional dexterity test. J. Hand Ther. 30, 74–79 (2017).
Google Scholar
Aaron, D. H. & Jansen, C. W. S. Development of the Functional Dexterity Test (FDT): construction, validity, reliability, and normative data. J. Hand Ther. 16, 12–21 (2003).
Google Scholar
Orland, M. D. et al. Hand size affects branching of the deep ulnar nerve and deep palmar arch. Surgical Radiologic Anat. 44, 1501–1505 (2022).
Moyà-Solà, S., Köhler, M. & Rook, L. Evidence of hominid-like precision grip capability in the hand of the Miocene ape Oreopithecus. Proc. Natl Acad. Sci. USA 96, 313–317 (1999).
Google Scholar
Key, A. J., Dunmore, C. J. & Marzke, M. W. The unexpected importance of the fifth digit during stone tool production. Sci. Rep. 9, 16724 (2019).
Google Scholar
Kunze, J. Functional adaptations and muscle attachment (entheseal) patterns in the hands of apes, humans, and hominins, Universität Tübingen, (2024).
Domalain, M., Bertin, A. & Daver, G. Was Australopithecus afarensis able to make the Lomekwian stone tools? Towards a realistic biomechanical simulation of hand force capability in fossil hominins and new insights on the role of the fifth digit. Comptes Rendus Palevol 16, 572–584 (2017).
Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B: Biol. Sci. 284, 20171765 (2017).
Tsegai, Z. J. et al. Trabecular bone structure correlates with hand posture and use in hominoids. PLoS ONE 8, e78781 (2013).
Google Scholar
Bardo, A. et al. The implications of thumb movements for Neanderthal and modern human manipulation. Sci. Rep. 10, 19323 (2020).
Google Scholar
Kunze, J., Harvati, K., Hotz, G. & Karakostis, F. A. Humanlike manual activities in Australopithecus. J. Hum. Evolution 196, 103591 (2024).
Karakostis, F. A. et al. Biocultural evidence of precise manual activities in an Early Holocene individual of the high-altitude Peruvian Andes. Am. J. Phys. Anthropol. 174, 35–48 (2021).
Google Scholar
Synek, A. et al. Musculoskeletal models of a human and bonobo finger: parameter identification and comparison to in vitro experiments. PeerJ 7, e7470 (2019).
Google Scholar
Püschel, T. A., Nicholson, S. L., Baker, J., Barton, R. A. & Venditti, C. Hominin brain size increase has emerged from within-species encephalization. Proc. Natl Acad. Sci., USA 121, e2409542121 (2024).
Google Scholar
Alba, D. M., Moyà-Solà, S. & Köhler, M. Morphological affinities of the Australopithecus afarensis hand on the basis of manual proportions and relative thumb length. J. Hum. Evolution 44, 225–254 (2003).
Skinner, M. M. et al. Response to Comment on “Human-like hand use in Australopithecus africanus. Science 348, 1101 (2015).
Google Scholar
Susman, R. Hand of Paranthropus robustus from Member 1, Swartkrans: fossil evidence for tool behavior. Science 240, 781–784 (1988).
Google Scholar
Almécija, S. & Alba, D. M. On manual proportions and pad-to-pad precision grasping in Australopithecus afarensis. J. Hum. Evol. 73, 88–92 (2014).
Google Scholar
Rolian, C. & Gordon, A. D. Reassessing manual proportions in Australopithecus afarensis. Am. J. Phys. Anthropol. 152, 393–406 (2013).
Google Scholar
Falk, D. et al. The brain of LB1, Homo floresiensis. Science 308, 242–245 (2005).
Google Scholar
Martin, R. D. et al. Comment on “The brain of LB1, Homo floresiensis. Science 312, 999 (2006).
Google Scholar
Kivell, T. L. et al. The hand of Homo naledi. Nat. Commun. 6, https://doi.org/10.1038/ncomms9431 (2015).
Garvin, H. M. et al. Body size, brain size, and sexual dimorphism in Homo naledi from the Dinaledi Chamber. J. Hum. Evolution 111, 119–138 (2017).
Syeda, S. M. et al. Phalangeal cortical bone distribution reveals different dexterous and climbing behaviors in Australopithecus sediba and Homo naledi. Sci. Adv. 11, eadt1201 (2025).
Google Scholar
Syeda, S. M. et al. Conference abstract: PaleoAnthropology, (2021).
Dunmore, C. J. et al. The position of Australopithecus sediba within fossil hominin hand use diversity. Nat. Ecol. Evolution 4, 911–918 (2020).
Kivell, T. L., Churchill, S. E., Kibii, J. M., Schmid, P. & Berger, L. R. The hand of Australopithecus sediba. PaleoAnthropology, 282-333 (2018).
Melchionna, M. et al. Cortical areas associated to higher cognition drove primate brain evolution. Commun. Biol. 8, 80 (2025).
Google Scholar
Melchionna, M. et al. From smart apes to human brain boxes. A uniquely derived brain shape in late hominins clade. Front. Earth Sci. 8, 273 (2020).
Sansalone, G. et al. Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat. Ecol. Evolution 7, 42–50 (2023).
Alatorre Warren, J. L., Ponce de León, M. S., Hopkins, W. D. & Zollikofer, C. P. Evidence for independent brain and neurocranial reorganization during hominin evolution. Proc. Natl Acad. Sci. 116, 22115–22121 (2019).
Google Scholar
Smaers, J. B. & Soligo, C. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc. R. Soc. B: Biol. Sci. 280, 20130269 (2013).
Google Scholar
Affinito, S., Eteson, B., Cáceres, L. T., Moos, E. T. & Karakostis, F. A. Exploring the cognitive underpinnings of early hominin stone tool use through an experimental EEG approach. Sci. Rep. 14, 26936 (2024).
Google Scholar
Stout, D. & Chaminade, T. Stone tools, language and the brain in human evolution. Philos. Trans. R. Soc. B: Biol. Sci. 367, 75–87 (2012).
Barton, R. A. Embodied cognitive evolution and the cerebellum. Philos. Trans. R. Soc. B: Biol. Sci. 367, 2097–2107 (2012).
Leggio, M. & Molinari, M. Cerebellar sequencing: a trick for predicting the future. Cerebellum 14, 35–38 (2015).
Google Scholar
Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great apes. Curr. Biol. 24, 2440–2444 (2014).
Google Scholar
DeCasien, A. R. & Higham, J. P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat. Ecol. Evolution 3, 1483–1493 (2019).
Kulik, V., Reyes, L. D. & Sherwood, C. C. Coevolution of language and tools in the human brain: An ALE meta-analysis of neural activation during syntactic processing and tool use. Prog. Brain Res. 275, 93–115 (2023).
Google Scholar
Bruner, E., Amano, H., Pereira-Pedro, A. S. & Ogihara, N. The Evolution of the Parietal Lobes in the Genus Homo. In Digital Endocasts. Replacement of Neanderthals by Modern Humans Series (eds Bruner, E., Ogihara, N. & Tanabe, H.) (Springer, 2018).
Maddaluno, O. et al. Encoding manual dexterity through modulation of intrinsic alpha band connectivity. J. Neurosci. 44, e1766232024 (2024).
Google Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307 (1995).
Google Scholar
Amunts, K. et al. Motor cortex and hand motor skills: structural compliance in the human brain. Hum. Brain Mapp. 5, 206–215 (1997).
Google Scholar
Sobinov, A. R. & Bensmaia, S. J. The neural mechanisms of manual dexterity. Nat. Rev. Neurosci. 22, 741–757 (2021).
Google Scholar
Stout, D. & Chaminade, T. The evolutionary neuroscience of tool making. Neuropsychologia 45, 1091–1100 (2007).
Google Scholar
de Jager, E. J., Risser, L., Mescam, M., Fonta, C. & Beaudet, A. Sulci 3D mapping from human cranial endocasts: A powerful tool to study hominin brain evolution. Hum. Brain Mapp. 43, 4433–4443 (2022).
Google Scholar
Ponce de León, M. S. et al. The primitive brain of early Homo. Science 372, 165–171 (2021).
Google Scholar
Tobias, P. V. The brain of Homo habilis: A new level of organization in cerebral evolution. J. Hum. Evolution 16, 741–761 (1987).
Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B: Biol. Sci. 274, 453–464 (2007).
Ellis, R. Bodies and other objects: The sensorimotor foundations of cognition. (Cambridge University Press, 2018).
Barton, R. A. & Barrett, L. Embodied cognitive evolution and the limits of convergence. Philosoph. Transac. Royal Soc. B: Biol. Sci. (2025).
Harvey, P. H. & Pagel, M. The comparative method in evolutionary biology. (Oxford University Press, 1991).
Wisniewski, A. L., Lloyd, G. T. & Slater, G. J. Extant species fail to estimate ancestral geographical ranges at older nodes in primate phylogeny. Proc. R. Soc. B: Biol. Sci. 289, 20212535 (2022).
Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biol. 10, e1003537 (2014).
Avaria-Llautureo, J. et al. The radiation and geographic expansion of primates through diverse climates. Proc. Natl. Acad. Sci. 122, e2423833122 (2025).
Kendall, M. & Colijn, C. Mapping phylogenetic trees to reveal distinct patterns of evolution. Mol. Biol. evolution 33, 2735–2743 (2016).
Google Scholar
Jombart, T., Kendall, M., Almagro-Garcia, J. & Colijn, C. treespace: Statistical exploration of landscapes of phylogenetic trees. Mol. Ecol. Resour. 17, 1385–1392 (2017).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2024).
Grabowski, M. Bigger brains led to bigger bodies?: The correlated evolution of human brain and body size. Curr. Anthropol. 57, 174–196 (2016).
Isler, K. et al. Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J. Hum. Evolution 55, 967–978 (2008).
Stephan, H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. wiss. Zool. 164, 143–172 (1960).
Burger, J. R., George, M. A. Jr., Leadbetter, C. & Shaikh, F. The allometry of brain size in mammals. J. Mammal. 100, 276–283 (2019).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
Google Scholar
Wagner, M. J. & Luo, L. Neocortex–cerebellum circuits for cognitive processing. Trends Neurosci. 43, 42–54 (2020).
Google Scholar