Lyons, T. W. et al. Co‐evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 572–586 (2024).
Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).
Google Scholar
Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).
Kasting, J. F. Earth’s early atmosphere. Science 259, 920–926 (1993).
Google Scholar
Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).
Google Scholar
Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110, 26–57 (2012).
Google Scholar
Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).
Google Scholar
Wallace, M. W. et al. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 466, 12–19 (2017).
Google Scholar
Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 5372, eaar5372 (2018).
Liu, X.-M. et al. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochem. Perspect. Lett. 2, 24–34 (2016).
Pogge Von Strandmann, P. A. E. et al. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Nat. Commun. 6, 10157 (2015).
Google Scholar
Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl Acad. Sci. USA 107, 17911–17915 (2010).
Google Scholar
Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).
Google Scholar
Stockey, R. G. et al. Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras. Nat. Geosci. 17, 667–674 (2024).
Krause, A. J., Mills, B. J. W. W., Merdith, A. S., Lenton, T. M. & Poulton, S. W. Extreme variability in atmospheric oxygen levels in the late Precambrian. Sci. Adv. 8, eabm8191 (2022).
Cole, D. B. et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44, 555–558 (2016).
Google Scholar
Bao, H. Sulfate: a time capsule for Earth’s O2, O3, and H2O. Chem. Geol. 395, 108–118 (2015).
Google Scholar
Planavsky, N. J., Reinhard, C. T., Isson, T. T., Ozaki, K. & Crockford, P. W. Large mass-independent oxygen isotope fractionations in mid-Proterozoic sediments: evidence for a low-oxygen atmosphere? Astrobiology 20, 628–636 (2020).
Google Scholar
Cao, X. & Bao, H. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. Proc. Natl Acad. Sci. USA 110, 14546–14550 (2013).
Google Scholar
Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).
Google Scholar
Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
Google Scholar
Uveges, B. T., Izon, G., Ono, S., Beukes, N. J. & Summons, R. E. Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event. Nat. Commun. 14, 1–12 (2023).
Mitchell, R. N., Feng, L., Zhang, Z. & Peng, P. Carbonate-organic decoupling during the first Neoproterozoic carbon isotope excursion. Innov. Geosci. 1, 100046 (2023).
Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).
Google Scholar
Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).
Google Scholar
Ye, Q. et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 43, 507–510 (2015).
Google Scholar
Darroch, S. A. F., Smith, E. F., Laflamme, M. & Erwin, D. H. Ediacaran extinction and Cambrian explosion. Trends Ecol. Evol. 33, 653–663 (2018).
Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).
Google Scholar
Turner, E. C. & Bekker, A. Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada). Geol. Soc. Am Bull. 128, B31268.1 (2015).
Reinhard, C. T. & Planavsky, N. J. The history of ocean oxygenation. Ann. Rev. Mar. Sci. 14, 331–353 (2022).
Wang, H. et al. A benthic oxygen oasis in the early Neoproterozoic ocean. Precambrian Res. 355, 106085 (2021).
Wang, H. et al. Spatiotemporal redox heterogeneity and transient marine shelf oxygenation in the Mesoproterozoic ocean. Geochim. Cosmochim. Acta 270, 201–217 (2020).
Google Scholar
Kohl, I. & Bao, H. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH=2–11). Geochim. Cosmochim. Acta 75, 1785–1798 (2011).
Google Scholar
Balci, N., Shanks, W. C., Mayer, B. & Mandernack, K. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71, 3796–3811 (2007).
Google Scholar
Killingsworth, B. A. et al. Towards a holistic sulfate–water–O2 triple oxygen isotope systematics. Chem. Geol. 588, 120678 (2022).
Crockford, P. W. et al. Depositional controls on Δ′17O signatures of sedimentary sulfate. Geophys. Res. Lett. 52, e2024GL114184 (2025).
Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s great oxidation. Proc. Natl Acad. Sci. USA 116, 17207–17212 (2019).
Google Scholar
Wang, H. et al. Sulfate triple-oxygen-isotope evidence confirming oceanic oxygenation 570 million years ago. Nat. Commun. 14, 4315 (2023).
Google Scholar
Peng, Y., Hattori, S., Zuo, P., Ma, H. & Bao, H. Record of pre-industrial atmospheric sulfate in continental interiors. Nat. Geosci. 16, 619–624 (2023).
Google Scholar
Crockford, P. W. et al. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).
Google Scholar
Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504–506 (2008).
Google Scholar
Waldeck, A. R. et al. Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment. Nat. Commun. 16, 2087 (2025).
Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).
Wostbrock, J. A. G., Cano, E. J. & Sharp, Z. D. An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).
Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).
Google Scholar
Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).
Google Scholar
Evans, S. D., Diamond, C. W., Droser, M. L. & Lyons, T. W. Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerg. Top. Life Sci. 2, 223–233 (2018).
Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).
Google Scholar
Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543 (2013).
Google Scholar
Cramer, B. D. & Jarvis, I. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 309–343 (Elsevier, 2020).
Peng, Y. et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes. Geology 42, 815–818 (2014).
Google Scholar
Bao, H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal. Chem. 78, 304–309 (2006).
Wei, Y., Yan, H., Peng, Y. & Bao, H. Quantitative conversion of sulfate oxygen for high-precision triple oxygen isotope analysis. Anal. Chem. 96, 19387–19395 (2024).
Cao, X. & Bao, H. Small triple oxygen isotope variations in sulfate: mechanisms and applications. Rev. Mineral. Geochem. 86, 463–488 (2021).
Canfield, D. E., Knoll, A. H., Poulton, S. W., Narbonne, G. M. & Dunning, G. R. Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. Am. J. Sci. 320, 97–124 (2020).
Google Scholar
Zhang, Z. et al. Oldest-known Neoproterozoic carbon isotope excursion: earlier onset of Neoproterozoic carbon cycle volatility. Gondwana Res. 94, 1–11 (2021).
Google Scholar
Halverson, G. P., Porter, S. M. & Shields, G. A. In Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 495–519 (Elsevier, 2020).
Kendall, B., Creaser, R. A. & Selby, D. Re–Os geochronology of postglacial black shales in Australia: constraints on the timing of ‘Sturtian’ glaciation. Geology 34, 729–732 (2006).
Google Scholar
Condon, D. et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).
Google Scholar
Lu, M. et al. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res. 225, 86–109 (2013).
Google Scholar
Fan, R., Deng, S. H. & Zhang, X. L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations. Sci. China Earth Sci. 54, 1686–1695 (2011).
Google Scholar
Wen, J. & Thiemens, M. H. Multi‐isotope study of the O(1D) + CO2 exchange and stratospheric consequences. J. Geophys. Res. Atmos. 98, 12801–12808 (1993).
Google Scholar
Burke, A. et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth Planet. Sci. Lett. 496, 168–177 (2018).
Google Scholar
Heidel, C. & Tichomirowa, M. The role of dissolved molecular oxygen in abiotic pyrite oxidation under acid pH conditions—experiments with 18O-enriched molecular oxygen. Appl. Geochem. 25, 1664–1675 (2010).
Google Scholar
Sahoo, S. K. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14, 457–468 (2016).
Bao, H., Cao, X. & Hayles, J. A. Triple oxygen isotopes: fundamental relationships and applications. Annu. Rev. Earth Planet Sci. 44, 463–492 (2016).
Google Scholar
Planavsky, N. J. et al. A sedimentary record of the evolution of the global marine phosphorus cycle. Geobiology 21, 168–174 (2022).
Shi, W. et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology 46, 267–270 (2018).
Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006).
Google Scholar
McFadden, K. A. et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008).
Google Scholar