Two-billion-year transitional oxygenation of the Earth’s surface

  • Lyons, T. W. et al. Co‐evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 572–586 (2024).

    Google Scholar 

  • Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).

    ADS 

    Google Scholar 

  • Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).

    Google Scholar 

  • Kasting, J. F. Earth’s early atmosphere. Science 259, 920–926 (1993).

    ADS 

    Google Scholar 

  • Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).

    ADS 

    Google Scholar 

  • Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110, 26–57 (2012).

    ADS 

    Google Scholar 

  • Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).

    ADS 

    Google Scholar 

  • Wallace, M. W. et al. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 466, 12–19 (2017).

    ADS 

    Google Scholar 

  • Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 5372, eaar5372 (2018).

    Google Scholar 

  • Liu, X.-M. et al. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochem. Perspect. Lett. 2, 24–34 (2016).

    Google Scholar 

  • Pogge Von Strandmann, P. A. E. et al. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Nat. Commun. 6, 10157 (2015).

    ADS 

    Google Scholar 

  • Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl Acad. Sci. USA 107, 17911–17915 (2010).

    ADS 

    Google Scholar 

  • Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

    ADS 

    Google Scholar 

  • Stockey, R. G. et al. Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras. Nat. Geosci. 17, 667–674 (2024).

    Google Scholar 

  • Krause, A. J., Mills, B. J. W. W., Merdith, A. S., Lenton, T. M. & Poulton, S. W. Extreme variability in atmospheric oxygen levels in the late Precambrian. Sci. Adv. 8, eabm8191 (2022).

    Google Scholar 

  • Cole, D. B. et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44, 555–558 (2016).

    ADS 

    Google Scholar 

  • Bao, H. Sulfate: a time capsule for Earth’s O2, O3, and H2O. Chem. Geol. 395, 108–118 (2015).

    ADS 

    Google Scholar 

  • Planavsky, N. J., Reinhard, C. T., Isson, T. T., Ozaki, K. & Crockford, P. W. Large mass-independent oxygen isotope fractionations in mid-Proterozoic sediments: evidence for a low-oxygen atmosphere? Astrobiology 20, 628–636 (2020).

    ADS 

    Google Scholar 

  • Cao, X. & Bao, H. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. Proc. Natl Acad. Sci. USA 110, 14546–14550 (2013).

    ADS 

    Google Scholar 

  • Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

    ADS 

    Google Scholar 

  • Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    ADS 

    Google Scholar 

  • Uveges, B. T., Izon, G., Ono, S., Beukes, N. J. & Summons, R. E. Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event. Nat. Commun. 14, 1–12 (2023).

    Google Scholar 

  • Mitchell, R. N., Feng, L., Zhang, Z. & Peng, P. Carbonate-organic decoupling during the first Neoproterozoic carbon isotope excursion. Innov. Geosci. 1, 100046 (2023).

    Google Scholar 

  • Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).

    ADS 

    Google Scholar 

  • Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).

    ADS 

    Google Scholar 

  • Ye, Q. et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 43, 507–510 (2015).

    ADS 

    Google Scholar 

  • Darroch, S. A. F., Smith, E. F., Laflamme, M. & Erwin, D. H. Ediacaran extinction and Cambrian explosion. Trends Ecol. Evol. 33, 653–663 (2018).

    Google Scholar 

  • Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    ADS 

    Google Scholar 

  • Turner, E. C. & Bekker, A. Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada). Geol. Soc. Am Bull. 128, B31268.1 (2015).

  • Reinhard, C. T. & Planavsky, N. J. The history of ocean oxygenation. Ann. Rev. Mar. Sci. 14, 331–353 (2022).

    Google Scholar 

  • Wang, H. et al. A benthic oxygen oasis in the early Neoproterozoic ocean. Precambrian Res. 355, 106085 (2021).

    Google Scholar 

  • Wang, H. et al. Spatiotemporal redox heterogeneity and transient marine shelf oxygenation in the Mesoproterozoic ocean. Geochim. Cosmochim. Acta 270, 201–217 (2020).

    ADS 

    Google Scholar 

  • Kohl, I. & Bao, H. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH=2–11). Geochim. Cosmochim. Acta 75, 1785–1798 (2011).

    ADS 

    Google Scholar 

  • Balci, N., Shanks, W. C., Mayer, B. & Mandernack, K. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71, 3796–3811 (2007).

    ADS 

    Google Scholar 

  • Killingsworth, B. A. et al. Towards a holistic sulfate–water–O2 triple oxygen isotope systematics. Chem. Geol. 588, 120678 (2022).

    Google Scholar 

  • Crockford, P. W. et al. Depositional controls on Δ′17O signatures of sedimentary sulfate. Geophys. Res. Lett. 52, e2024GL114184 (2025).

  • Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s great oxidation. Proc. Natl Acad. Sci. USA 116, 17207–17212 (2019).

    ADS 

    Google Scholar 

  • Wang, H. et al. Sulfate triple-oxygen-isotope evidence confirming oceanic oxygenation 570 million years ago. Nat. Commun. 14, 4315 (2023).

    ADS 

    Google Scholar 

  • Peng, Y., Hattori, S., Zuo, P., Ma, H. & Bao, H. Record of pre-industrial atmospheric sulfate in continental interiors. Nat. Geosci. 16, 619–624 (2023).

    ADS 

    Google Scholar 

  • Crockford, P. W. et al. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).

    ADS 

    Google Scholar 

  • Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504–506 (2008).

    ADS 

    Google Scholar 

  • Waldeck, A. R. et al. Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment. Nat. Commun. 16, 2087 (2025).

    Google Scholar 

  • Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).

    Google Scholar 

  • Wostbrock, J. A. G., Cano, E. J. & Sharp, Z. D. An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).

    Google Scholar 

  • Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).

    ADS 

    Google Scholar 

  • Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

    ADS 

    Google Scholar 

  • Evans, S. D., Diamond, C. W., Droser, M. L. & Lyons, T. W. Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerg. Top. Life Sci. 2, 223–233 (2018).

    Google Scholar 

  • Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).

    ADS 

    Google Scholar 

  • Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543 (2013).

    ADS 

    Google Scholar 

  • Cramer, B. D. & Jarvis, I. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 309–343 (Elsevier, 2020).

  • Peng, Y. et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes. Geology 42, 815–818 (2014).

    ADS 

    Google Scholar 

  • Bao, H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal. Chem. 78, 304–309 (2006).

    Google Scholar 

  • Wei, Y., Yan, H., Peng, Y. & Bao, H. Quantitative conversion of sulfate oxygen for high-precision triple oxygen isotope analysis. Anal. Chem. 96, 19387–19395 (2024).

    Google Scholar 

  • Cao, X. & Bao, H. Small triple oxygen isotope variations in sulfate: mechanisms and applications. Rev. Mineral. Geochem. 86, 463–488 (2021).

    Google Scholar 

  • Canfield, D. E., Knoll, A. H., Poulton, S. W., Narbonne, G. M. & Dunning, G. R. Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. Am. J. Sci. 320, 97–124 (2020).

    ADS 

    Google Scholar 

  • Zhang, Z. et al. Oldest-known Neoproterozoic carbon isotope excursion: earlier onset of Neoproterozoic carbon cycle volatility. Gondwana Res. 94, 1–11 (2021).

    ADS 

    Google Scholar 

  • Halverson, G. P., Porter, S. M. & Shields, G. A. In Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 495–519 (Elsevier, 2020).

  • Kendall, B., Creaser, R. A. & Selby, D. Re–Os geochronology of postglacial black shales in Australia: constraints on the timing of ‘Sturtian’ glaciation. Geology 34, 729–732 (2006).

    ADS 

    Google Scholar 

  • Condon, D. et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

    ADS 

    Google Scholar 

  • Lu, M. et al. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res. 225, 86–109 (2013).

    ADS 

    Google Scholar 

  • Fan, R., Deng, S. H. & Zhang, X. L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations. Sci. China Earth Sci. 54, 1686–1695 (2011).

    ADS 

    Google Scholar 

  • Wen, J. & Thiemens, M. H. Multi‐isotope study of the O(1D) + CO2 exchange and stratospheric consequences. J. Geophys. Res. Atmos. 98, 12801–12808 (1993).

    ADS 

    Google Scholar 

  • Burke, A. et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth Planet. Sci. Lett. 496, 168–177 (2018).

    ADS 

    Google Scholar 

  • Heidel, C. & Tichomirowa, M. The role of dissolved molecular oxygen in abiotic pyrite oxidation under acid pH conditions—experiments with 18O-enriched molecular oxygen. Appl. Geochem. 25, 1664–1675 (2010).

    ADS 

    Google Scholar 

  • Sahoo, S. K. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14, 457–468 (2016).

    Google Scholar 

  • Bao, H., Cao, X. & Hayles, J. A. Triple oxygen isotopes: fundamental relationships and applications. Annu. Rev. Earth Planet Sci. 44, 463–492 (2016).

    ADS 

    Google Scholar 

  • Planavsky, N. J. et al. A sedimentary record of the evolution of the global marine phosphorus cycle. Geobiology 21, 168–174 (2022).

    Google Scholar 

  • Shi, W. et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology 46, 267–270 (2018).

    ADS 

    Google Scholar 

  • Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006).

    ADS 

    Google Scholar 

  • McFadden, K. A. et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008).

    ADS 

    Google Scholar 

  • Continue Reading