McManus, D. P. et al. Schistosomiasis. Nat. Rev. Dis. Primers 4, 1–19 (2018).
World Health Organization. & UNICEF. Progress on Sanitation and Drinking-Water: 2014 Update.
Hotez, P. J. et al. The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases. PLoS Negl. Trop. Dis. 8, e2865 (2014).
Google Scholar
Ferrari, A. J. et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet. 403, 2133–2161 (2024).
Wang, H. et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 388, 1459–1544 (2016).
Boissier, J. et al. Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. Lancet Infect. Dis. 16, 971–979 (2016).
Google Scholar
He, Y.-X., Salafsky, B. & Ramaswamy, K. Host–parasite relationships of Schistosoma japonicum in mammalian hosts. Trends Parasitol. 17, 320–324 (2001).
Google Scholar
Wang, T. P. et al. Does multiple hosts mean multiple parasites? Population genetic structure of Schistosoma japonicum between definitive host species. Int J. Parasitol. 36, 1317–1325 (2006).
Google Scholar
Ross, A. G. P. et al. Schistosomiasis in the People’s Republic of China: Prospects and Challenges for the 21st Century. Clin. Microbiol Rev. 14, 270–295 (2001).
Google Scholar
Collins, C., Xu, J. & Tang, S. Schistosomiasis control and the health system in P.R. China. Infect. Dis. Poverty 1, 8 (2012).
Google Scholar
Rollinson, D. et al. Time to set the agenda for schistosomiasis elimination. Acta Trop. 128, 423–440 (2013).
Google Scholar
Grimes, J. E. et al. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review. Parasit. Vectors 8, 156 (2015).
Google Scholar
Webb, A. J. et al. Specific Nucleic AcId Ligation for the detection of Schistosomes: SNAILS. PLoS Negl. Trop. Dis. 16, e0010632 (2022).
Google Scholar
Ying, Z.-M. et al. Spinach-based fluorescent light-up biosensors for multiplexed and label-free detection of microRNAs. Chem. Commun. 54, 3010–3013 (2018).
Woo, C. H., Jang, S., Shin, G., Jung, G. Y. & Lee, J. W. Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription. Nat. Biomed. Eng. 4, 1168–1179 (2020).
Google Scholar
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Google Scholar
Emery, A. M., Allan, F. E., Rabone, M. E. & Rollinson, D. Schistosomiasis collection at NHM (SCAN). Parasit. Vectors 5, 185 (2012).
Google Scholar
Xu, J. et al. Evolution of the National Schistosomiasis Control Programmes in The People’s Republic of China. in 1–38 (2016). https://doi.org/10.1016/bs.apar.2016.02.001.
Katz, N., Chaves, A. & Pellegrino, J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev. Inst. Med Trop. Sao Paulo 14, 397–400 (1972).
Google Scholar
Lin, D.-D. et al. Routine Kato–Katz technique underestimates the prevalence of Schistosoma japonicum: A case study in an endemic area of the People’s Republic of China. Parasitol. Int 57, 281–286 (2008).
Google Scholar
Cai, P. et al. Comparison of Kato Katz, antibody-based ELISA and droplet digital PCR diagnosis of schistosomiasis japonica: Lessons learnt from a setting of low infection intensity. PLoS Negl. Trop. Dis. 13, e0007228 (2019).
Google Scholar
Dang-Trinh, M. A. et al. Analyses of the expression, immunohistochemical properties and serodiagnostic potential of Schistosoma japonicum peroxiredoxin-4. Parasit. Vectors 13, 436 (2020).
Google Scholar
Angeles, J. et al. Utilization of ELISA Using Thioredoxin Peroxidase-1 and Tandem Repeat Proteins for Diagnosis of Schistosoma japonicum Infection among Water Buffaloes. PLoS Negl. Trop. Dis. 6, e1800 (2012).
Google Scholar
Angeles, J. et al. Human Antibody Response to Thioredoxin Peroxidase-1 and Tandem Repeat Proteins as Immunodiagnostic Antigen Candidates for Schistosoma japonicum Infection. Am. Soc. Tropical Med. Hyg. 85, 674–679 (2011).
Angeles, J. et al. Serological evaluation of the schistosome’s secretory enzyme phytochelatin synthase and phosphoglycerate mutase for the detection of human Schistosoma japonicum infection. Parasitol. Res. 121, 2445–2448 (2022).
Google Scholar
Champion, T. S., Connelly, S., Smith, C. J. & Lamberton, P. H. L. Monitoring schistosomiasis and sanitation interventions—The potential of
Carlton, E. J., Bates, M. N., Zhong, B., Seto, E. Y. W. & Spear, R. C. Evaluation of Mammalian and Intermediate Host Surveillance Methods for Detecting Schistosomiasis Reemergence in Southwest China. PLoS Negl. Trop. Dis. 5, e987 (2011).
Google Scholar
Sturrock, R. F., Karamsadkar, S. J. & Ouma, J. Schistosome infection rates in field snails: Schistosoma mansoni in Biomphalaria pfeifferi from Kenya. Ann. Trop. Med Parasitol. 73, 369–375 (1979).
Google Scholar
Frandsen, F. & Christensen, N. O. An introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance. Acta Trop. 41, 181–202 (1984).
Google Scholar
Allan, F. et al. Use of sentinel snails for the detection of Schistosoma haematobium transmission on Zanzibar and observations on transmission patterns. Acta Trop. 128, 234–240 (2013).
Google Scholar
Pennance, T. et al. Development of a Molecular Snail Xenomonitoring Assay to Detect Schistosoma haematobium and Schistosoma bovis Infections in their Bulinus Snail Hosts. Molecules 25, 4011 (2020).
Google Scholar
Allan, F. et al. Snail-Related Contributions from the Schistosomiasis Consortium for Operational Research and Evaluation Program Including Xenomonitoring, Focal Mollusciciding, Biological Control, and Modeling. Am. J. Trop. Med Hyg. 103, 66–79 (2020).
Google Scholar
Abbasi, I., King, C. H., Muchiri, E. M. & Hamburger, J. Detection of Schistosoma mansoni and Schistosoma haematobium DNA by Loop-Mediated Isothermal Amplification: Identification of Infected Snails from Early Prepatency. Am. J. Trop. Med Hyg. 83, 427–432 (2010).
Google Scholar
Hamburger, J. et al. Evaluation of Loop-Mediated Isothermal Amplification Suitable for Molecular Monitoring of Schistosome-Infected Snails in Field Laboratories. Am. J. Trop. Med Hyg. 88, 344–351 (2013).
Google Scholar
Zhang, Y. et al. Circulating cell-free DNA as a biomarker for diagnosis of Schistosomiasis japonica. Parasit. Vectors 17, 114 (2024).
Google Scholar
Sengupta, M. E. et al. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proc. Natl Acad. Sci. 116, 8931–8940 (2019).
Google Scholar
Alzaylaee, H. et al. Schistosoma species detection by environmental DNA assays in African freshwaters. PLoS Negl. Trop. Dis. 14, e0008129 (2020).
Google Scholar
Lodh, N., Naples, J. M., Bosompem, K. M., Quartey, J. & Shiff, C. J. Detection of Parasite-Specific DNA in Urine Sediment Obtained by Filtration Differentiates between Single and Mixed Infections of Schistosoma mansoni and S. haematobium from Endemic Areas in Ghana. PLoS One 9, e91144 (2014).
Google Scholar
Hung, Y. W. & Remais, J. Quantitative Detection of Schistosoma japonicum Cercariae in Water by Real-Time PCR. PLoS Negl. Trop. Dis. 2, e337 (2008).
Google Scholar
Gordon, C. atherine A. et al. Real-time PCR Demonstrates High Prevalence of Schistosoma japonicum in the Philippines: Implications for Surveillance and Control. PLoS Negl. Trop. Dis. 9, e0003483 (2015).
Google Scholar
Kane, R. A. et al. Detection and quantification of schistosome DNA in freshwater snails using either fluorescent probes in real-time PCR or oligochromatographic dipstick assays targeting the ribosomal intergenic spacer. Acta Trop. 128, 241–249 (2013).
Google Scholar
Cnops, L., Tannich, E., Polman, K., Clerinx, J. & Van Esbroeck, M. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants. Tropical Med. Int. Health 17, 1208–1216 (2012).
ten Hove, R. J. et al. Multiplex real-time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium infection in stool samples collected in northern Senegal. Trans. R. Soc. Trop. Med Hyg. 102, 179–185 (2008).
Google Scholar
Sun, K. et al. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit. Vectors 9, 476 (2016).
Google Scholar
Deng, W. et al. Laboratory Evaluation of a Basic Recombinase Polymerase Amplification (RPA) Assay for Early Detection of Schistosoma japonicum. Pathogens 11, 319 (2022).
Google Scholar
Qin, Z.-Q. et al. Field Evaluation of a Loop-Mediated Isothermal Amplification (LAMP) Platform for the Detection of Schistosoma japonicum Infection in Oncomelania hupensis Snails. Trop. Med Infect. Dis. 3, 124 (2018).
Google Scholar
Xu, J. et al. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int J. Parasitol. 40, 327–331 (2010).
Google Scholar
Young, N. D. et al. Exploring molecular variation in Schistosoma japonicum in China. Sci. Rep. 5, 17345 (2015).
Google Scholar
Souza, A. A. et al. Diagnostics and the neglected tropical diseases roadmap: setting the agenda for 2030. Trans. R. Soc. Trop. Med Hyg. 115, 129–135 (2021).
Google Scholar
Valentim, C. L. L. et al. Genetic and Molecular Basis of Drug Resistance and Species-Specific Drug Action in Schistosome Parasites. Science (1979) 342, 1385–1389 (2013).
Chevalier, F. D. et al. Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS Pathog. 15, e1007881 (2019).
Google Scholar
Marchant, J. S. Progress interrogating TRPMPZQ as the target of praziquantel. PLoS Negl. Trop. Dis. 18, e0011929 (2024).
Google Scholar
Geneva: World Health Organization. Diagnostic Target Product Profiles for Monitoring, Evaluation and Surveillance of Schistosomiasis Control Programmes. (2021).
Attwood, S. W., Fatih, F. A. & Upatham, E. S. DNA-Sequence Variation Among Schistosoma mekongi Populations and Related Taxa; Phylogeography and the Current Distribution of Asian Schistosomiasis. PLoS Negl. Trop. Dis. 2, e200 (2008).
Google Scholar
Kane, R. A. et al. A phylogeny based on three mitochondrial genes supports the division of Schistosoma intercalatum into two separate species. Parasitology 127, 131–137 (2003).
Google Scholar
Lockyer, A. E. et al. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126, 203–224 (2003).
Google Scholar
Webster, B. L. et al. DNA barcoding of Schistosoma haematobium on Zanzibar reveals substantial genetic diversity and two major phylogenetic groups. Acta Trop. 128, 206–217 (2013).
Google Scholar
Djuikwo-Teukeng, F. F. et al. Population genetic structure of Schistosoma bovis in Cameroon. Parasit. Vectors 12, 56 (2019).
Google Scholar
Hanelt, B. et al. Schistosoma kisumuensis n. sp. (Digenea: Schistosomatidae) from murid rodents in the Lake Victoria Basin, Kenya and its phylogenetic position within the S. haematobium species group. Parasitology 136, 987–1001 (2009).
Google Scholar
Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).
Google Scholar
Doyle, S. R. et al. Evaluation of DNA Extraction Methods on Individual Helminth Egg and Larval Stages for Whole-Genome Sequencing. Front Genet 10, 826 (2019).
Google Scholar