Decoupling geographical constraints from human mobility

  • Fujita, M. et al. The Spatial Economy: Cities, Regions, and International Trade (MIT Press, 2001).

  • Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl Acad. Sci. USA 103, 2015–2020 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Setton, E. et al. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J. Expo. Sci. Environ. Epidemiol. 21, 42–48 (2011).

    PubMed 

    Google Scholar 

  • Coutrot, A. et al. Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Pumain, D. Pour une théorie évolutive des villes. Espace Géogr. 26, 119–134 (1997).

    Google Scholar 

  • Arcaute, E. Hierarchies defined through human mobility. Nature 587, 372–373 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Arcaute, E. & Ramasco, J. J. Recent advances in urban system science: models and data. PLoS ONE 17, e0263200 (2022).

    Google Scholar 

  • Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Schläpfer, M. et al. The universal visitation law of human mobility. Nature 593, 522–527 (2021).

    PubMed 

    Google Scholar 

  • Zipf, G. K. The p1p2/d hypothesis: on the intercity movement of persons. Am. Sociol. Rev. 11, 677–686 (1946).

    Google Scholar 

  • Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S. & Baronchelli, A. Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018).

    PubMed 

    Google Scholar 

  • Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Pumain, D. (ed.) Hierarchy in Natural and Social Sciences (Springer, 2006).

  • Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 150691 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, A. G. Entropy in Urban and Regional Modelling (Pion, 1970).

  • Ripley, B. D. Modelling spatial patterns. J. R. Stat. Soc. B 39, 172–212 (1977).

    Google Scholar 

  • Samaniego, H. & Moses, M. E. Cities as organisms: allometric scaling of urban road networks. J. Transp. Land Use 1, 21–39 (2008).

    Google Scholar 

  • Lee, M., Barbosa, H., Youn, H., Holme, P. & Ghoshal, G. Morphology of travel routes and the organization of cities. Nat. Commun. 8, 2229 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Batty, M. & Longley, P. Fractal Cities: A Geometry of Form and Function (Academic Press, 1994).

  • Frankhauser, P. The fractal approach: a new tool for the spatial analysis of urban agglomerations. Popul. Engl. Sel. 10, 205–240 (1998).

    Google Scholar 

  • Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).

    Google Scholar 

  • Carrothers, V. A historical review of the gravity and potential concepts of human interaction. J. Am. Inst. Plann. 22, 94–102 (1956).

    Google Scholar 

  • Wilson, A. G. A statistical theory of spatial distribution models. Transp. Res. 1, 253–269 (1967).

    CAS 

    Google Scholar 

  • Stouffer, S. Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5, 845–867 (1940).

    Google Scholar 

  • Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7, e40692 (2012).

    Google Scholar 

  • Mazzoli, M. et al. Field theory for recurrent mobility. Nat. Commun. 10, 3895 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, X.-Y., Wang, W.-X., Gao, Z.-Y. & Lai, Y.-C. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 8, 1639 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, X.-P., Hao, Q., Wang, B.-H. & Zhou, T. Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys. Rev. E 83, 036117 (2011).

    Google Scholar 

  • Hong, I., Jung, W.-S. & Jo, H.-H. Gravity model explained by the radiation model on a population landscape. PLoS ONE 14, e0218028 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, J. E. & Courgeau, D. Modeling distances between humans using Taylor’s law and geometric probability. Math. Popul. Stud. 24, 197–218 (2017).

    Google Scholar 

  • Gao, Q. et al. Identifying human mobility via trajectory embeddings. In Proc. 26th International Joint Conference on Artificial Intelligence (ed. Sierra, C.) 1689–1695 (International Joint Conferences on Artificial Intelligence, 2017).

  • Murray, D. et al. Unsupervised embedding of trajectories captures the latent structure of scientific migration. Proc. Natl Acad. Sci. USA 120, e2305414120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids: with Applications to Soft Matter 2nd edn (Academic Press, 1986).

  • Nijkamp, P. & Reggiani, A. A Synthesis Between Macro and Micro Models in Spatial Interaction Analysis, with Special Reference to Dynamics Tech. Rep. (VU Univ. Amsterdam, Faculty of Economics and Business Administration, 1986).

  • Clark, C. Urban population densities. J. R. Stat. Soc. A 114, 490–496 (1951).

    Google Scholar 

  • Newling, B. E. The spatial variation of urban population densities. Geogr. Rev. 59, 242–252 (1969).

    Google Scholar 

  • Bertaud, A. & Malpezzi, S. The Spatial Distribution of Population in 48 World Cities: Implications for Economies in Transition Working Paper (Center for Urban Land Economics Research, Univ. Wisconsin, 2003).

  • Duranton, G. & Puga, D. in Handbook of Regional and Urban Economics Vol. 4 (eds Henderson, J. V. & Thisse, J.-F.) 2063–2117 (Elsevier, 2004).

  • Lennard-Jones, J. E. Cohesion. Proc. Phys. Soc. 43, 461–482 (1931).

    CAS 

    Google Scholar 

  • Ornstein, L. S. & Zernike, F. Accidental deviations of density and opalescence at the critical point of a single substance. Proc. R. Netherlands Acad. Arts Sci. 17, 793–806 (1914).

    Google Scholar 

  • Christaller, W. Die Zentralen Orte in Süddeutschland (Gustav Fischer, 1933).

  • Soneira, R. M. & Peebles, P. J. E. A computer model universe: simulation of the nature of the galaxy distribution in the Lick catalog. Astron. J. 83, 845–860 (1978).

    Google Scholar 

  • Makse, H. A., Havlin, S. & Stanley, H. E. Modelling urban growth patterns. Nature 377, 608–612 (1995).

    CAS 

    Google Scholar 

  • Cadwallader, M. Migration and Residential Mobility: Macro and Micro Approaches (Univ. Wisconsin Press, 1992).

  • Pappalardo, L., Manley, E., Sekara, V. & Alessandretti, L. Future directions in human mobility science. Nat. Comput. Sci. 3, 7 (2023).

    Google Scholar 

  • Clark, W. A., Huang, Y. & Withers, S. Does commuting distance matter? Commuting tolerance and residential change. Reg. Sci. Urban Econ. 33, 199–221 (2003).

    Google Scholar 

  • Weber, A. & Friedrich, C. J. Alfred Weber’s Theory of the Location of Industries (Univ. Chicago Press, 1929).

  • Moduldata for Befolkning og Valg (Danmarks Statistik, 2024); https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-befolkning-og-valg

  • Api Documentation for Adgangsadresse (Dataforsyningen, 2023); https://dawadocs.dataforsyningen.dk/dok/api/adgangsadresse

  • Schlosser, F., Sekara, V., Brockmann, D. & Garcia-Herranz, M. Biases in human mobility data impact epidemic modeling. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.12521 (2021).

  • Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W. & Buckee, C. O. The impact of biases in mobile phone ownership on estimates of human mobility. J. R. Soc. Interface 10, 20120986 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobsen, R., Møller, H. & Mouritsen, A. Natural variation in the human sex ratio. Hum. Reprod. 14, 3120–3125 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Births (Statistics Denmark, 2024); https://www.dst.dk/en/Statistik/emner/borgere/befolkning/foedsler

  • Campello, R. J., Moulavi, D. & Sander, J. Density-based clustering based on hierarchical density estimates. In Proc. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (eds Pei, J. et al.) 160–172 (Springer, 2013).

  • Yang, D., Zhang, D. & Qu, B. Participatory cultural mapping based on collective behavior data in location-based social networks. ACM Trans. Intell. Syst. Technol. 7, 30:1–30:23 (2015).

    Google Scholar 

  • Runfola, D. et al. geoBoundaries: a global database of political administrative boundaries. PLoS ONE 15, e0231866 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, X., Zhao, J., Dong, L. & Xu, K. Unraveling the origin of exponential law in intra-urban human mobility. Sci. Rep. 3, 2983 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maier, B. F. Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph. Sci. Rep. 9, 9268 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Verlet, L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98 (1967).

    CAS 

    Google Scholar 

  • Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    CAS 

    Google Scholar 

  • Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Google Scholar 

  • Hanel, R., Corominas-Murtra, B., Liu, B. & Thurner, S. Fitting power-laws in empirical data with estimators that work for all exponents. PLoS ONE 12, e0170920 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauke, H. Parameter estimation for power-law distributions by maximum likelihood methods. Eur. Phys. J. B 58, 167–173 (2007).

    CAS 

    Google Scholar 

  • Maier, B. F. Maximum-likelihood fits of piece-wise Pareto distributions with finite and non-zero core. Preprint at arXiv https://doi.org/10.48550/arXiv.2309.09589 (2023).

  • Boucherie, L., Maier, B. & Lehmann, S. Decomposing geographical and universal aspects of human mobility. Zenodo https://doi.org/10.5281/zenodo.14329837 (2024).

  • Continue Reading