Thermally assisted microbot transport through high-viscosity media

  • Abbott, J. J., Diller, E. & Petruska, A. J. Magnetic methods in robotics. Annu. Rev. Control Robot Auton. Syst. 3, 57–90 (2020).

    Google Scholar 

  • Chen, X. Z. et al. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today. 9, 37–48 (2017).

    Google Scholar 

  • Xiao, Y., Zhang, J., Fang, B., Zhao, X. & Hao, N. Acoustics-Actuated Microrobots Micromachines 13, 481 (2022).

    Google Scholar 

  • Kim, H. & Kim, M. J. Electric field control of Bacteria-Powered microrobots using a static obstacle avoidance algorithm. IEEE Trans. Robot. 32, 125–137 (2016).

    Google Scholar 

  • Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    Google Scholar 

  • Doutel, E. & Galindo-Rosales, F. J. Campo-Deaño, L. Hemodynamics challenges for the navigation of medical microbots for the treatment of CVDs. Materials 14, 7402 (2021).

    Google Scholar 

  • Hu, M. et al. Micro/Nanorobot: A promising targeted drug delivery system. Pharmaceutics 12, 665 (2020).

    Google Scholar 

  • Jang, D., Jeong, J., Song, H. & Chung, S. K. Targeted drug delivery technology using untethered microrobots: a review. J. Micromech Microeng. 29, 053002 (2019).

    Google Scholar 

  • Yang, M. et al. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci. Adv. 9, eadk7251 (2023).

    Google Scholar 

  • Wang, S. et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Sci. Adv. 6, eaaz8204 (2020).

    Google Scholar 

  • Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. U.S.A. 104, 1482–1487 (2007).

  • Aghakhani, A. et al. High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8, eabm5126 (2022).

    Google Scholar 

  • Walker, D., Käsdorf, B. T., Jeong, H. H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).

    Google Scholar 

  • Tasci, T. O., Herson, P. S., Neeves, K. B. & Marr, D. W. M. Surface-enabled propulsion and control of colloidal microwheels. Nat. Commun. 7, 10225 (2016).

    Google Scholar 

  • Zimmermann, C. J., Herson, P. S., Neeves, K. B. & Marr, D. W. M. Multimodal microwheel swarms for targeting in three-dimensional networks. Sci. Rep. 12, 5078 (2022).

    Google Scholar 

  • Ishiki, A. K., Neeves, K. B. & Marr, D. W. M. Reversible microwheel translation induced by polymer depletion. Langmuir 39, 15547–15552 (2023).

    Google Scholar 

  • Wolvington, E., Yeager, L., Gao, Y., Zimmermann, C. J. & Marr, D. W. M. Paddlebots: translation of rotating colloidal assemblies near an Air/Water interface. Langmuir 39, 7846–7851 (2023).

    Google Scholar 

  • Tasci, T. O. et al. Enhanced fibrinolysis with magnetically powered colloidal microwheels. Small 13, 1700954 (2017).

    Google Scholar 

  • Disharoon, D., Trewyn, B. G., Herson, P. S., Marr, D. W. M. & Neeves, K. B. Breaking the fibrinolytic speed limit with microwheel co-delivery of tissue plasminogen activator and plasminogen. J. Thromb. Haemost. 20, 486–497 (2022).

    Google Scholar 

  • Pontius, M. H. H. et al. Magnetically powered microwheel thrombolysis of occlusive thrombi in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 121, e2315083121 (2024).

  • Osmond, M. J. et al. Micrometer-scale tPA beads amplify plasmin generation for enhanced thrombolytic therapy. Bioeng. Transla Med. e70012 (2025). https://doi.org/10.1002/btm2.70012

  • Ota, S. & Takemura, Y. Characterization of Néel and brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles. J. Phys. Chem. C. 123, 28859–28866 (2019).

    Google Scholar 

  • Joshi, R., Jadhao, M. & Ghosh, S. K. Recent trends in the applications of nanocomposites in cancer theranostics. Green. Sustainable Process. Chem. Environ. Eng. Sci. (Elsevier), 283–320. https://doi.org/10.1016/B978-0-323-95169-2.00011-0 (2023).

  • Koleoso, M. et al. Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio.. 8, 100085 (2020).

    Google Scholar 

  • Rajan, A. & Sahu, N. K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res. 22, 319 (2020).

    Google Scholar 

  • Park, J., Jin, C., Lee, S., Kim, J. & Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 8, 1900213 (2019).

    Google Scholar 

  • Landers, F. C. et al. On-Command disassembly of microrobotic superstructures for transport and delivery of magnetic micromachines. Adv. Mater. 36, 2310084 (2024).

    Google Scholar 

  • Rajabimashhadi, Z., Gallo, N., Salvatore, L. & Lionetto, F. Collagen derived from fish industry waste: progresses and challenges. Polymers 15, 544 (2023).

    Google Scholar 

  • Wagner, C. E., Wheeler, K. M. & Ribbeck, K. Mucins and their role in shaping the functions of mucus barriers. Annu. Rev. Cell. Dev. Biol. 34, 189–215 (2018).

    Google Scholar 

  • Korson, L., Drost-Hansen, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).

    Google Scholar 

  • Kol, R. et al. Toward more universal prediction of polymer solution viscosity for Solvent-Based recycling. Ind. Eng. Chem. Res. 61, 10999–11011 (2022).

    Google Scholar 

  • Al-Shammari, B., Al-Fariss, T., Al-Sewailm, F. & Elleithy, R. The effect of polymer concentration and temperature on the rheological behavior of metallocene linear low density polyethylene (mLLDPE) solutions. J. King Saud Univ. – Eng. Sci. 23, 9–14 (2011).

    Google Scholar 

  • Harding, S. E. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog. Biophys. Mol. Biol. 68, 207–262 (1997).

    Google Scholar 

  • de la García, J. & Hernández Cifre, J. G. Hydrodynamic properties of biomacromolecules and macromolecular complexes: concepts and Methods. A tutorial Mini-review. J. Mol. Biol. 432, 2930–2948 (2020).

    Google Scholar 

  • Liu, M., Zhang, J., Shan, W. & Huang, Y. Developments of mucus penetrating nanoparticles. Asian J. Pharm. Sci. 10, 275–282 (2015).

    Google Scholar 

  • Ponchel, G. Specific and non-specific bioadhesive particulate systems for oral delivery to the Gastrointestinal tract. Adv. Drug Deliv. Rev. 34, 191–219 (1998).

    Google Scholar 

  • Hanlon, D. F., Clouter, M. J. & Andrews, G. T. Temperature dependence of the viscoelastic properties of a natural gastropod mucus by Brillouin light scattering spectroscopy. Soft. Matter.. 19, 8101–8111 (2023).

    Google Scholar 

  • Çinar, Y. Blood viscosity and blood pressure: role of temperature and hyperglycemia. Am. J. Hypertens. 14, 433–438 (2001).

    Google Scholar 

  • Hasnain, S. et al. Knee synovial fluid flow and heat transfer, a power law model. Sci. Rep. 13, 18184 (2023).

    Google Scholar 

  • Penconek, A., Michalczuk, U., Sienkiewicz, A. & Moskal, A. The effect of desert dust particles on rheological properties of saliva and mucus. Environ. Sci. Pollut Res. 26, 12150–12157 (2019).

    Google Scholar 

  • Gavilán, H. et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50, 11614–11667 (2021).

    Google Scholar 

  • Fonnum, G., Johansson, C., Molteberg, A., Mørup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).

    Google Scholar 

  • Shah, R. R. et al. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model. Mater. Sci. Engineering: C. 68, 18–29 (2016).

    Google Scholar 

  • Liu, X. et al. Comprehensive Understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10, 3793–3815 (2020).

    Google Scholar 

  • Johannsen, M. et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperth. 21, 637–647 (2005).

    Google Scholar 

  • Kouzoudis, D., Samourgkanidis, G., Kolokithas-Ntoukas, A., Zoppellaro, G. & Spiliotopoulos, K. Magnetic hyperthermia in the 400–1,100 kHz frequency range using mions of condensed colloidal nanocrystal clusters. Front. Mater. 8, 638019 (2021).

    Google Scholar 

  • Lai, S. K., Wang, Y. Y., Wirtz, D. & Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009).

    Google Scholar 

  • Yang, L. & Zhang, L. Motion control in magnetic microrobotics: from individual and multiple robots to swarms. Annu. Rev. Control Robot Auton. Syst. 4, 509–534 (2021).

    Google Scholar 

  • Seneterre, E., Paganin, F., Bruel, J., Michel, F. & Bousquet, J. Measurement of the internal size of bronchi using high resolution computed tomography (HRCT). Eur. Respir J. 7, 596–600 (1994).

    Google Scholar 

  • Bosetti, F. et al. Small Blood Vessels: Big Health Problems? Scientific Recommendations of the National Institutes of Health Workshop. JAHA 5, e004389 (2016).

  • Cunha, L. H. P. et al. Slow relaxation dynamics of superparamagnetic colloidal beads in time-varying fields. Phys. Rev. Mater. 8, 105601 (2024).

    Google Scholar 

  • Erb, R. M., Martin, J. J., Soheilian, R., Pan, C. & Barber, J. R. Actuating soft matter with magnetic torque. Adv. Funct. Mater. 26, 3859–3880 (2016).

    Google Scholar 

  • Kanwal, R. P. Slow rotatory motion of a circular disk about one of its diameters in a viscous fluid. J. Appl. Mech. 26, 485–487 (1959).

    Google Scholar 

  • Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena (Wiley, 2002).

  • Jeffery, G. B. On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. s2_14, 327–338 (1915).

    Google Scholar 

  • Tanzosh, J. P. & Stone, H. A. Transverse motion of a disk through a rotating viscous fluid. J. Fluid Mech. 301, 295–324 (1995).

    Google Scholar 

  • Martínez-Padilla, L. P. Rheology of liquid foods under shear flow conditions: recently used models. J. Texture Stud. 55, e12802 (2024).

    Google Scholar 

  • Serio, F. et al. Co-loading of doxorubicin and iron oxide nanocubes in Polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells. J. Colloid Interface Sci. 607, 34–44 (2022).

    Google Scholar 

  • Zimmermann, C. J. et al. Delivery and actuation of aerosolized microbots. Nano Select Nano. 202100353 https://doi.org/10.1002/nano.202100353 (2022).

  • Balsamo, R., Lanata, L. & Egan, C. G. Mucoactive drugs. Eur. Respir Rev. 19, 127–133 (2010).

    Google Scholar 

  • Andreu, I. & Natividad, E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int. J. Hyperth. 29, 739–751 (2013).

    Google Scholar 

  • Deatsch, A. E. & Evans, E. E. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014).

    Google Scholar 

  • Zimmermann, C. czimm79/MuControl: v1.1.1 – DOI generation. Zenodo https://doi.org/10.5281/ZENODO.5793922 (2021).

    Google Scholar 

  • Continue Reading