Proximal guided hybrid federated learning approach with parameter efficient adaptive intelligence for pneumonia diagnosis

  • Carter, M. J. et al. Evaluation of Acute and Convalescent Antibody Concentration Against Pneumococcal Capsular Polysaccharides for the Diagnosis of Pneumococcal Infection in Children with Community-Acquired Pneumonia. Pediatr. Infect. Dis. J. 43(2), E67–E70. https://doi.org/10.1097/INF.0000000000004185.

  • Duan, B. Advances in Pneumonia Detection: A Comprehensive Investigation of Federated Learning and Deep Learning-Based Approaches, in scitepress.org, pp. 714–718. (2024). https://doi.org/10.5220/0012969400004508

  • Khan, R. et al. Advanced federated ensemble internet of learning approach for cloud based medical healthcare monitoring system. Sci. Rep. 14(1), https://doi.org/10.1038/s41598-024-77196-x (2024).

  • Hassan, E., Saber, A., El-Kenawy, E. S. M., Bhatnagar, R. & Shams, M. Y. Early Detection of Black Fungus Using Deep Learning Models for Efficient Medical Diagnosis, in Proceedings of the International Conference on Emerging Techniques in Computational Intelligence, ICETCI 2024, 2024, pp. 426–431., 2024, pp. 426–431. (2024). https://doi.org/10.1109/ICETCI62771.2024.10704103

  • Hassan, E., Saber, A., El-Sappagh, S. & El-Rashidy, N. Optimized ensemble deep learning approach for accurate breast cancer diagnosis using transfer learning and grey wolf optimization, Evol. Syst., vol. 16, no. 2, pp. 1–17, Jun. (2025). https://doi.org/10.1007/s12530-025-09686-w

  • Khan, S. H. & Alam, M. G. R. A Federated Learning Approach to Pneumonia Detection, in 7th International Conference on Engineering and Emerging Technologies, ICEET 2021, (2021). https://doi.org/10.1109/ICEET53442.2021.9659591

  • Li, J. et al. Mar., A Federated Learning Based Privacy-Preserving Smart Healthcare System, IEEE Trans. Ind. Informatics, vol. 18, no. 3, pp. 2021–2031, (2022). https://doi.org/10.1109/TII.2021.3098010

  • Feki, I., Ammar, S., Kessentini, Y. & Muhammad, K. Federated learning for COVID-19 screening from chest X-ray images. Appl. Soft Comput. 106, 107330. https://doi.org/10.1016/j.asoc.2021.107330 (Jul. 2021).

  • Hu, E. et al. Jun., LoRA: Low-Rank Adaptation of Large Language Models, ICLR 2022–10th Int. Conf. Learn. Represent., Accessed: Jul. 08, 2025. [Online]. (2021). Available: https://arxiv.org/abs/2106.09685v2

  • Kaissis, G. A., Makowski, M. R., Rückert, D. & Braren, R. F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2 (6), 305–311. https://doi.org/10.1038/s42256-020-0186-1 (2020).

    Google Scholar 

  • Kermany, D. S. et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 172 (5), 1122–1131. https://doi.org/10.1016/j.cell.2018.02.010 (Feb. 2018). .e9.

  • Rajpurkar, P. et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,., Accessed: Jul. 17, 2025. [Online]. (2017). Available: https://stanfordmlgroup.github.io/projects/chexnet/

  • Irvin, J. et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison, in 33rd AAAI Conference on Artificial Intelligence, AAAI 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, 2019, pp. 590–597. (2019). https://doi.org/10.1609/aaai.v33i01.3301590

  • Pardamean, B., Cenggoro, T. W., Rahutomo, R., Budiarto, A. & Karuppiah, E. K. Transfer Learning from Chest X-Ray Pre-trained Convolutional Neural Network for Learning Mammogram Data, in Procedia Computer Science, Jan. vol. 135, pp. 400–407. (2018). https://doi.org/10.1016/j.procs.2018.08.190

  • Brendan McMahan, H. et al. y Communication-efficient learning of deep networks from decentralized data, in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS, Feb. 2017. Accessed: Jul. 08, 2025. [Online]. Available: https://arxiv.org/abs/1602.05629v4, Feb. 2017. Accessed: Jul. 08, 2025. [Online]. Available: https://arxiv.org/abs/1602.05629v4 (2017).

  • Asokan, M., Benjamin, J. G., Yaqub, M. & Nandakumar, K. A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Jul. 15274 LNCS, 226–235 https://doi.org/10.1007/978-3-031-77610-6_21 (2025).

  • C. Mathew and P. Asha, “FedProx: FedSplit Algorithm based Federated Learning for Statistical and System Heterogeneity in Medical Data Communication,” J. Internet Serv. Inf. Secur., vol. 14, no. 3, pp. 353–370, Aug. 2024, https://doi.org/10.58346/JISIS.2024.I3.021 .

  • Mabrouk, A., Díaz, R. P., Redondo, M., Abd Elaziz & Kayed, M. Ensemble federated learning: an approach for collaborative pneumonia diagnosis. Appl. Soft Comput. 144, 110500. https://doi.org/10.1016/j.asoc.2023.110500 (Sep. 2023).

  • Sun, Y., Li, Z., Li, Y. & Ding, B. IMPROVING LORA IN PRIVACY-PRESERVING FEDERATED LEARNING, in 12th International Conference on Learning Representations, ICLR, 2024., 2024. (2024).

  • Ulku, I., Tanriover, O. O. & Akagunduz, E. Low-Rank Adaptation of Vision Transformers for Remote Sensing With Near-Infrared Imagery. IEEE Geosci. Remote Sens. Lett. 21, https://doi.org/10.1109/LGRS.2024.3449372 (2024).

  • Dai, Y., Gao, Y. & Liu, F. Transmed: Transformers advance multi-modal medical image classification. Diagnostics 11(8), https://doi.org/10.3390/diagnostics11081384 (2021).

  • Lotfinia, M., Tayebiarasteh, A., Samiei, S., Joodaki, M. & Arasteh, S. T. Boosting multi-demographic federated learning for chest radiograph analysis using general-purpose self-supervised representations. Eur. J. Radiol. Artif. Intell. 100028. https://doi.org/10.1016/j.ejrai.2025.100028.

  • Slika, B., Dornaika, F., Merdji, H. & Hammoudi, K. Lung pneumonia severity scoring in chest X-ray images using transformers, Med. Biol. Eng. Comput., vol. 62, no. 8, pp. 2389–2407, Aug. (2024). https://doi.org/10.1007/s11517-024-03066-3

  • Liu, J. et al. Adaptive Parameter-Efficient Federated Fine-Tuning on Heterogeneous Devices, IEEE Trans. Mob. Comput., no. 01, pp. 1–18, Jul. (2024). https://doi.org/10.1109/TMC.2025.3586644

  • Wu, P. et al. FedFMSL: federated learning of foundation models with sparsely activated LoRA. IEEE Trans. Mob. Comput. 23 (12), 15167–15181. https://doi.org/10.1109/TMC.2024.3454634 (2024).

    Google Scholar 

  • Cho, Y. J., Liu, L., Xu, Z., Fahrezi, A. & Joshi, G. Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation Models, in EMNLP –2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, Jan. 2024, pp. 12903–12913., Jan. 2024, pp. 12903–12913. (2024). https://doi.org/10.18653/v1/2024.emnlp-main.717

  • Continue Reading