Elwood, H. & Case, S. Private sector pioneers: how companies are incorporating environmentally preferable purchasing. Greener Manag. Int. 29, 70–94 (2000).
World Resources Institute and World Business Council for Sustainable Development. GHG Protocol Corporate Accounting Standard. (WBC, 2001).
U.S. Securities and Exchange Commission, 17 CFR 210 (USSEC, 2024).
European Council. Corporate Sustainability Reporting Directive (EU, 2022).
California Senate. Climate Corporate Data Accountability Act. Senate Bill No. 253 (California Senate, 2023).
Science-based Targets Initiative. Companies taking action. (UN, 2024).
Day, T. et al. Corporate Climate Responsibility Monitor 2022. (NewClimate Institute for Climate Policy and Global Sustainability, 2022).
Vieira, L. C., Longo, M. & Mura, M. Impact pathways: the hidden challenges of Scope 3 emissions measurement and management. Int. J. Oper. Prod. Manag. 44, 326–334 (2024).
Hettler, M. & Graf-Vlachy, L. Corporate scope 3 carbon emission reporting as an enabler of supply chain decarbonization: a systematic review and comprehensive research agenda. Bus. Strategy Environ. 33, 263–282 (2023).
Kaplan, R. S. & Ramanna, K. Accounting for Climate Change. Harvard Business Review, 120-131 (Wiley, 2021).
Depoers, F., Jeanjean, T. & Jérôme, T. Voluntary disclosure of greenhouse gas emissions: contrasting the carbon disclosure project and corporate reports. J. Bus. Ethics 134, 445–461 (2014).
Klaassen, L. & Stoll, C. Harmonizing corporate carbon footprints. Nat. Clim. Change 12, 6149 (2021).
Hettler, M. & Graf-Vlachy, L. Corporate scope 3 carbon emission reporting as an enabler of supply chain decarbonization: A systematic review and comprehensive research agenda. Business Strategy and the Environment, 1-20, https://doi.org/10.1002/bse.3486 (2023).
Blanco, C., Caro, F. & Corbett, C. J. The state of supply chain carbon footprinting: analysis of CDP disclosures by US firms. J. Clean. Prod. 135, 1189–1197 (2016).
Schmidt, M., Nill, M. & Scholz, J. Determining the scope 3 emissions of companies. Chem. Eng. Technol. 45, 1218–1230 (2022).
Kaplan, R.S. & Ramanna, K. Accounting for climate change. Harv. Bus. Rev. 99, 120–131 (2021).
Jakobs, A., Schulte, S. & Pauliuk, S. Where is my footprint located? Estimating the geographical variance of hybrid LCA footprints. J. Indus. Ecol. https://doi.org/10.1111/jiec.13467 (2024).
CDP. CDP 2023 disclosure data factsheet, https://www.cdp.net/en/companies/cdp-2023-disclosure-data-factsheet (CDP, 2023).
Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 107, 5687–5692 (2010).
Liu, Z. et al. Targeted opportunities to address the climate-trade dilemma in China. Nature Climate Change, https://doi.org/10.1038/nclimate2800 (2015).
Lenzen, M., Pade, L.-L. & Munksgaard, J. CO2 multipliers in multi-region input-output models. Econ. Syst. Res. 16, 391–412 (2010).
Ingwersen, W. W., Namovich, J., Young, B. & Vendries, J. Estimating embodied environmental flows in international imports for the USEEIO Model. (U.S. Environmental Protection Agency, 2024).
Andrew, R., Peters, G. P. & Lennox, J. Approximation and regional aggregation in multi-regional input-output analysis for national carbon footprint accounting. Econ. Syst. Res. 21, 311–335 (2010).
Long, Y. et al. Comparison of city-level carbon footprint evaluation by applying single- and multi-regional input-output tables. J. Environ. Manage. 260, https://doi.org/10.1016/j.jenvman.2020.110108 (2020).
Li, M., Wiedmann, T. & Hadjikakou, M. Enabling full supply chain corporate responsibility: scope 3 emissions targets for ambitious climate change mitigation. Environ. Sci. Technol. 54, 400–411 (2020).
Suh, S. Developing a sectoral environmentaldatabase for input–output analysis: the comprehensive environmentaldata archive of the US. Econ. Syst. Res. 17, 449–469 (2005).
Friedlingstein, P. et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).
Liu, Z., Deng, Z., Davis, S. J. & Ciais, P. Global carbon emissions in 2023. Nat. Rev. Earth Environ. 5, 253–254 (2024).
Fischer, C. & Fox, A. K. Comparing policies to combat emissions leakage: border tax adjustments versus rebates. J. Environ. Econ. Manage. 64, 199–216 (2009).
European Council. Carbon Border Adjustment Mechanism (European Council, 2023).
Perkins, J. & Suh, S. Uncertainty implications of hybrid approach in LCA: precision versus accuracy. Environ. Sci. Technol. 53, 3681–3688 (2019).
Hong, C. et al. Global and regional drivers of land-use emissions 1961-2017. Nature 589, 554–561 (2021).
Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input-output tables. J. Ind. Ecol. 22, 502–515 (2018).
Plevin, R. J., Delucchi, M. A. & Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 18, 73–83 (2013).
Brander, M. The most important GHG accounting concept you may not have heard of: the attributional-consequential distinction. Carbon Manag. 13, 337–339 (2022).
Earles, J. M. & Halog, A. Consequential life cycle assessment: a review. Int. J. Life cycle Assess. 16, 445–453 (2011).
Palazzo, J., Geyer, R. & Suh, S. A review of methods for characterizing the environmental consequences of actions in life cycle assessment. J. Ind. Ecol. 24, 815–829 (2020).
U.N. The System of National Accounts (SNA). (SNA, 2024).
Janssens-Maenhout, G. et al. EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012. Earth Syst. Sci. Data 11, 959–1002 (2017).
EPA. Greenhouse Gases Equivalencies Calculator – Calculations and References. (Environmental Protection Agency, 2022).
International Energy Agency (IEA). Steel — Tracking Steel. IEA. Retrieved December 4, 2025, from https://www.iea.org/energy-system/industry/steel IEA (2023).
Hasanbeigi, A. Global Steel Industry’s GHG Emissions. (Global Efficiency Intelligence, 2022).
Gibbs, M. J., Soyka, P., Conneely, D. & Kruger, D. CO2 Emissions from Cement Production. (IPCC, 2000).
EPA. U.S. Cement Industry Carbon Intensities. (EPA, 2021).
Ingwersen, W. W., Li, M., Young, B., Vendries, J. & Birney, C. USEEIO v2.0, The US Environmentally-Extended Input-Output Model v2.0. Sci. Data 9, 194 (2022).
Miller, R. & Blair, P. Input-output analysis: foundations and extensions. (Cambridge University Press, 2009).
Heijungs, R. & Suh, S. The Computational Structure of Life Cycle Assessment. (Springer, 2002).
OECD. OECD Inter-Country Input-Output Database. (OECD, 2021).
BEA. Input-Output Accounts Data. (BEA, 2019).
ONS. U.K. Input-output analytical tables: product by product. (U.K. Office for National Statistics, 2019).
NBS. National Data. (National Bureau of Statistics of China, 2019).
BoK. Economic Statistics System. (Bank of Korea, 2019).
SOJ. 2015 Input-Output Tables for Japan. (Statistics of Japan, 2019).
U.N. U.N. Comtrade Database. (United Nations, 2020).
EPA. National emissions inventory 2018. (Environmental Protection Agency, 2021).
ONS. Atmospheric emissions: greenhouse gases by industry and gas. (U.K. Office for National Statistics, 2019).
GGIRC. National GHG Inventory Reports. (Greenhouse Gas Inventory & Research Center of Korea, 2020).
NIES. Embodied Energy and Emission Intensity data for Japan Using Input-Output Tables. (National Institute for Environmental Studies of Japan, 2019).
UNFCCC. United Nations Framework Convention on Climate Change. (UNFCCC, 1992).