Prasad, S. D. & Chakraborty, M. Bearing capacity of ring footing resting on two layered soil. Comput. Geotech. 134, 104088. https://doi.org/10.1016/j.compgeo.2021.104088 (2021).
Seyedi Hosseininia, E. Bearing capacity factors of ring footings. Iran. J. Sci. Technol. Trans. Civil Eng. 40, 121–132. https://doi.org/10.1007/s40996-016-0003-6 (2016).
Fisher, K. Zur berechnung der Setzung von fundamenten in der form einer kreisformigen ringflache. Der Bauingenieur. 32, 172–174 (1957).
Egorov, K. in Proc. 6 th international conference of soil mechanics and foundation engineering. 41–45.
Egorov, K. & Nichiporovich, A. in Proceedings of the 5th international conference on soil mechanics and foundation engineering. 861–866.
Milovic, D. in Proc., 8th Int. Conf. on Soil Mechanics and Foundation Engineering. 167–171.
Al-Sanad, H. A., Ismael, N. F. & Brenner, R. P. Settlement of circular and ring plates in very dense calcareous sands. J. Geotech. Eng. 119, 622–638. https://doi.org/10.1061/(asce)0733-9410 (1993). (1993)119:4(622).
Ismael, N. F. Loading tests on circular and ring plates in very dense cemented sands. J. Geotech. Eng. 122, 281–287. https://doi.org/10.1061/(asce)0733-9410(1996)122:4(281) (1996).
Saha, M. Ultimate bearing capacity of ring footings on sand. M. Eng. thesis (1978).
Boushehrian, J. & Hataf, N. Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotext. Geomembr. 21, 241–256. https://doi.org/10.1016/s0266-1144(03)00029-3 (2003).
Zhao, L. & Wang, J. H. Vertical bearing capacity for ring footings. Comput. Geotech. 35, 292–304. https://doi.org/10.1016/j.compgeo.2007.05.005 (2008).
Kumar, J. & Chakraborty, M. Bearing Capacity Factors for Ring Foundations. J. Geotech. GeoEnviron. Eng. 141, https://doi.org/10.1061/(asce)gt.1943-5606.0001345 (2015).
Keshavarz, A. & Kumar, J. Bearing capacity computation for a ring foundation using the stress characteristics method. Comput. Geotech. 89, 33–42. https://doi.org/10.1016/j.compgeo.2017.04.006 (2017).
Tang, C. & Phoon, K. K. Prediction of bearing capacity of ring foundation on dense sand with regard to stress level effect. Int. J. Geomech. 18 https://doi.org/10.1061/(asce)gm.1943-5622.0001312 (2018).
Bui-Ngoc, T., Nguyen, T., Nguyen-Quang, M. T. & Shiau, J. Predicting load-displacement of driven PHC pipe piles using stacking ensemble with Pareto optimization. Eng. Struct. 316 https://doi.org/10.1016/j.engstruct.2024.118574 (2024).
Nguyen, T., Ly, D. K., Shiau, J. & Nguyen-Dinh, P. Optimizing load-displacement prediction for bored piles with the 3mSOS algorithm and neural networks. Ocean Eng. 304, 117758. https://doi.org/10.1016/j.oceaneng.2024.117758 (2024).
Nguyen-Minh, T., Bui-Ngoc, T., Shiau, J., Nguyen, T. & Nguyen-Thoi, T. Undrained sinkhole stability of circular cavity: a comprehensive approach based on isogeometric analysis coupled with machine learning. Acta Geotech. https://doi.org/10.1007/s11440-024-02266-3 (2024).
Shiau, J., Nguyen, T. & Ly-Khuong, D. Unraveling seismic uplift behavior of plate anchors in frictional-cohesive soils: A comprehensive analysis through stability factors and machine learning. Ocean Eng. 297, 116987. https://doi.org/10.1016/j.oceaneng.2024.116987 (2024).
Nguyen, D. K., Nguyen, T. P., Ngamkhanong, C., Keawsawasvong, S. & Lai, V. Q. Bearing capacity of ring footings in anisotropic clays: FELA and ANN. Neural Comput. Appl. 35, 10975–10996. https://doi.org/10.1007/s00521-023-08278-6 (2023).
Vali, R. et al. Developing a novel big dataset and a deep neural network to predict the bearing capacity of a ring footing. Journal of Rock Mechanics and Geotechnical Engineering, (2024). https://doi.org/10.1016/j.jrmge.2024.02.016
Kolmogorov, A. N. On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables (American Mathematical Society, 1961).
Kolmogorov, A. N. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Translations Am. Math. Soc. 2, 55–59 (1963).
Liu, Z. et al. Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024).
Bolton, M. D. & Lau, C. K. Vertical bearing capacity factors for circular and strip footings on Mohr–Coulomb soil. Can. Geotech. J. 30, 1024–1033. https://doi.org/10.1139/t93-099 (1993).
Davis, E. & Booker, J. in Proc. 1st Australian-New Zealand Conf. on Geomechanics, Melbourne. 275–282.
Shiau, J., Keawsawasvong, S. & Yodsomjai, W. Determination of support pressure for the design of square box culverts. Int. J. Geomech. 23 https://doi.org/10.1061/(asce)gm.1943-5622.0002620 (2023).
Nguyen, T. & Shiau, J. Revisiting active and passive Earth pressure problems using three stability factors. Comput. Geotech. 163, 105759. https://doi.org/10.1016/j.compgeo.2023.105759 (2023).
Krabbenhoft, K., Lyamin, A. & Krabbenhoft, J. Optum computational engineering (OptumG2). Computer software (2015).
Gholami, H. & Hosseininia, E. S. Bearing capacity factors of ring footings by using the method of characteristics. Geotech. Geol. Eng. 35, 2137–2146. https://doi.org/10.1007/s10706-017-0233-9 (2017).
Chavda, J. T. & Dodagoudar, G. R. Finite element evaluation of vertical bearing capacity factors N′c, N′q, N′γ for ring footings. Geotech. Geol. Eng. 37, 741–754. https://doi.org/10.1007/s10706-018-0645-1 (2018).
Benmebarek, S., Remadna, M. S., Benmebarek, N. & Belounar, L. Numerical evaluation of the bearing capacity factor of ring footings. Comput. Geotech. 44, 132–138. https://doi.org/10.1016/j.compgeo.2012.04.004 (2012).
Mangalathu, S., Hwang, S. H. & Jeon, J. S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley additive explanations (SHAP) approach. Eng. Struct. 219, 110927. https://doi.org/10.1016/j.engstruct.2020.110927 (2020).