Prediction of bearing capacity of ring footings on cohesive frictional soils using Terzaghi stability factors and Kolmogorov Arnold networks

  • Prasad, S. D. & Chakraborty, M. Bearing capacity of ring footing resting on two layered soil. Comput. Geotech. 134, 104088. https://doi.org/10.1016/j.compgeo.2021.104088 (2021).

    Google Scholar 

  • Seyedi Hosseininia, E. Bearing capacity factors of ring footings. Iran. J. Sci. Technol. Trans. Civil Eng. 40, 121–132. https://doi.org/10.1007/s40996-016-0003-6 (2016).

    Google Scholar 

  • Fisher, K. Zur berechnung der Setzung von fundamenten in der form einer kreisformigen ringflache. Der Bauingenieur. 32, 172–174 (1957).

    Google Scholar 

  • Egorov, K. in Proc. 6 th international conference of soil mechanics and foundation engineering. 41–45.

  • Egorov, K. & Nichiporovich, A. in Proceedings of the 5th international conference on soil mechanics and foundation engineering. 861–866.

  • Milovic, D. in Proc., 8th Int. Conf. on Soil Mechanics and Foundation Engineering. 167–171.

  • Al-Sanad, H. A., Ismael, N. F. & Brenner, R. P. Settlement of circular and ring plates in very dense calcareous sands. J. Geotech. Eng. 119, 622–638. https://doi.org/10.1061/(asce)0733-9410 (1993). (1993)119:4(622).

    Google Scholar 

  • Ismael, N. F. Loading tests on circular and ring plates in very dense cemented sands. J. Geotech. Eng. 122, 281–287. https://doi.org/10.1061/(asce)0733-9410(1996)122:4(281) (1996).

    Google Scholar 

  • Saha, M. Ultimate bearing capacity of ring footings on sand. M. Eng. thesis (1978).

  • Boushehrian, J. & Hataf, N. Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotext. Geomembr. 21, 241–256. https://doi.org/10.1016/s0266-1144(03)00029-3 (2003).

    Google Scholar 

  • Zhao, L. & Wang, J. H. Vertical bearing capacity for ring footings. Comput. Geotech. 35, 292–304. https://doi.org/10.1016/j.compgeo.2007.05.005 (2008).

    Google Scholar 

  • Kumar, J. & Chakraborty, M. Bearing Capacity Factors for Ring Foundations. J. Geotech. GeoEnviron. Eng. 141, https://doi.org/10.1061/(asce)gt.1943-5606.0001345 (2015).

  • Keshavarz, A. & Kumar, J. Bearing capacity computation for a ring foundation using the stress characteristics method. Comput. Geotech. 89, 33–42. https://doi.org/10.1016/j.compgeo.2017.04.006 (2017).

    Google Scholar 

  • Tang, C. & Phoon, K. K. Prediction of bearing capacity of ring foundation on dense sand with regard to stress level effect. Int. J. Geomech. 18 https://doi.org/10.1061/(asce)gm.1943-5622.0001312 (2018).

  • Bui-Ngoc, T., Nguyen, T., Nguyen-Quang, M. T. & Shiau, J. Predicting load-displacement of driven PHC pipe piles using stacking ensemble with Pareto optimization. Eng. Struct. 316 https://doi.org/10.1016/j.engstruct.2024.118574 (2024).

  • Nguyen, T., Ly, D. K., Shiau, J. & Nguyen-Dinh, P. Optimizing load-displacement prediction for bored piles with the 3mSOS algorithm and neural networks. Ocean Eng. 304, 117758. https://doi.org/10.1016/j.oceaneng.2024.117758 (2024).

    Google Scholar 

  • Nguyen-Minh, T., Bui-Ngoc, T., Shiau, J., Nguyen, T. & Nguyen-Thoi, T. Undrained sinkhole stability of circular cavity: a comprehensive approach based on isogeometric analysis coupled with machine learning. Acta Geotech. https://doi.org/10.1007/s11440-024-02266-3 (2024).

    Google Scholar 

  • Shiau, J., Nguyen, T. & Ly-Khuong, D. Unraveling seismic uplift behavior of plate anchors in frictional-cohesive soils: A comprehensive analysis through stability factors and machine learning. Ocean Eng. 297, 116987. https://doi.org/10.1016/j.oceaneng.2024.116987 (2024).

    Google Scholar 

  • Nguyen, D. K., Nguyen, T. P., Ngamkhanong, C., Keawsawasvong, S. & Lai, V. Q. Bearing capacity of ring footings in anisotropic clays: FELA and ANN. Neural Comput. Appl. 35, 10975–10996. https://doi.org/10.1007/s00521-023-08278-6 (2023).

    Google Scholar 

  • Vali, R. et al. Developing a novel big dataset and a deep neural network to predict the bearing capacity of a ring footing. Journal of Rock Mechanics and Geotechnical Engineering, (2024). https://doi.org/10.1016/j.jrmge.2024.02.016

  • Kolmogorov, A. N. On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables (American Mathematical Society, 1961).

  • Kolmogorov, A. N. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Translations Am. Math. Soc. 2, 55–59 (1963).

    Google Scholar 

  • Liu, Z. et al. Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024).

  • Bolton, M. D. & Lau, C. K. Vertical bearing capacity factors for circular and strip footings on Mohr–Coulomb soil. Can. Geotech. J. 30, 1024–1033. https://doi.org/10.1139/t93-099 (1993).

    Google Scholar 

  • Davis, E. & Booker, J. in Proc. 1st Australian-New Zealand Conf. on Geomechanics, Melbourne. 275–282.

  • Shiau, J., Keawsawasvong, S. & Yodsomjai, W. Determination of support pressure for the design of square box culverts. Int. J. Geomech. 23 https://doi.org/10.1061/(asce)gm.1943-5622.0002620 (2023).

  • Nguyen, T. & Shiau, J. Revisiting active and passive Earth pressure problems using three stability factors. Comput. Geotech. 163, 105759. https://doi.org/10.1016/j.compgeo.2023.105759 (2023).

    Google Scholar 

  • Krabbenhoft, K., Lyamin, A. & Krabbenhoft, J. Optum computational engineering (OptumG2). Computer software (2015).

  • Gholami, H. & Hosseininia, E. S. Bearing capacity factors of ring footings by using the method of characteristics. Geotech. Geol. Eng. 35, 2137–2146. https://doi.org/10.1007/s10706-017-0233-9 (2017).

    Google Scholar 

  • Chavda, J. T. & Dodagoudar, G. R. Finite element evaluation of vertical bearing capacity factors N′c, N′q, N′γ for ring footings. Geotech. Geol. Eng. 37, 741–754. https://doi.org/10.1007/s10706-018-0645-1 (2018).

    Google Scholar 

  • Benmebarek, S., Remadna, M. S., Benmebarek, N. & Belounar, L. Numerical evaluation of the bearing capacity factor of ring footings. Comput. Geotech. 44, 132–138. https://doi.org/10.1016/j.compgeo.2012.04.004 (2012).

    Google Scholar 

  • Mangalathu, S., Hwang, S. H. & Jeon, J. S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley additive explanations (SHAP) approach. Eng. Struct. 219, 110927. https://doi.org/10.1016/j.engstruct.2020.110927 (2020).

    Google Scholar 

  • Continue Reading