Large gains in leaf scale photosynthetic rates of sparsely vegetated arid and semi-arid lands

  • Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    Google Scholar 

  • Chen, C. et al. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl Acad. Sci. USA 119, e2115627119 (2022).

    Google Scholar 

  • Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).

    Google Scholar 

  • Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from one year of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    Google Scholar 

  • Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Google Scholar 

  • Pu, J. et al. Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022. Earth Syst. Sci. Data 16, 15–34 (2024).

    Google Scholar 

  • Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Communications 7, 13428 (2016).

    Google Scholar 

  • Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).

    Google Scholar 

  • Pugh, T. A. et al. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).

    Google Scholar 

  • Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Chang. Biol. 26, 2390–2402 (2020).

    Google Scholar 

  • Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 5, 2413–2445 (2020).

    Google Scholar 

  • Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to rising CO2. Nat. Clim. Chang. 13, 1376–1381 (2023).

    Google Scholar 

  • Winkler, A. J. et al. Carbon system state determines warming potential of emissions. PLoS ONE 19, e0306128 (2024).

    Google Scholar 

  • Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Google Scholar 

  • Wang, S. et al. Drylands contribute disproportionately to observed global productivity Increases. Science Bulletin 68, 224–232 (2023).

    Google Scholar 

  • Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600 (2014).

    Google Scholar 

  • Xu, L. et al. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett. 38, L07402 (2011).

    Google Scholar 

  • Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    Google Scholar 

  • Yang, J. et al. Amazon drought and forest response: largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Glob. Change Biol. 24, 1919–1934 (2018).

    Google Scholar 

  • Thornley, J. H. Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular hyperbola for leaf photosynthesis. Ann. Bot. 89, 451–458 (2002).

    Google Scholar 

  • Brodersen, C. R. & Vogelmann, T. C. Do changes in light direction affect absorption profiles in leaves? Funct. Plant Biol. 37, 403–412 (2010).

    Google Scholar 

  • Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO−2. Remote Sens 11, 2563 (2019).

    Google Scholar 

  • Stich, S. et al. Trends and Drivers of Terrestrial Sources and Sinks of Carbon Dioxide: An Overview of the TRENDY Project. Glob. Biogeochem. Cycles 38, e2024GB008102 (2024).

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  • Chen, Y. et al. The direct and indirect effects of the environmental factors on global terrestrial gross primary productivity over the past four decades. Environ. Res. Lett. 19, 014052 (2023).

    Google Scholar 

  • Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci Data 6, 74 (2019).

    Google Scholar 

  • Nelson, J. A. et al. X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X. Biogeosciences 21, 5079–5115 (2024).

    Google Scholar 

  • Cai, W. & Prentice, I. C. Recent trends in gross primary production and their drivers: analysis and modelling at flux-site and global scales. Environ. Res. Lett. 15, 124050 (2020).

    Google Scholar 

  • O’Sullivan, M. et al. Climate-driven variability and trends in plant productivity over recent decades based on three global products. Glob. Biogeochem. Cyc. 34, e2020GB006613 (2020).

    Google Scholar 

  • Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Google Scholar 

  • Zhou, L. et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 106, 20069–20083 (2001).

    Google Scholar 

  • Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).

    Google Scholar 

  • Winkler, A. J. et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).

    Google Scholar 

  • Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Google Scholar 

  • Gutschick, V. P. Photosynthesis model for C3 leaves incorporating CO2 transport, propagation of radiation, and biochemistry. 1. Kinetics and their parameterization. Photosynthetica 18, 549–568 (1984).

    Google Scholar 

  • Collatz, G. J. et al. Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration – a model that includes a laminar boundary-layer. Agric. For. Meteorol. 54, 107–136 (1991).

    Google Scholar 

  • Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).

    Google Scholar 

  • Liang, S. et al. The global land surface satellite (GLASS) product suite. Bull. Am. Meteorol. Soc. 102, E323–E337 (2021).

    Google Scholar 

  • Yan, K. et al. HiQ LAI: A high-quality reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2002. Earth Syst. Sci. Data 16, 1601–1622 (2024).

    Google Scholar 

  • Cao, S. et al. Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020. Earth Syst. Sci. Data 15, 4877–4899 (2023).

    Google Scholar 

  • Ma, H. & Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 273, 112985 (2022).

    Google Scholar 

  • Wei, F. et al. Divergent trends of ecosystem-scale photosynthetic efficiency between arid and humid lands across the globe. Glob. Ecol. Biogeogr. 31, 1824–1837 (2022).

    Google Scholar 

  • Dardel, C. et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ. 140, 350–364 (2014).

    Google Scholar 

  • Brandt, M. et al. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Glob. Change Biol. 21, 1610–1620 (2015).

    Google Scholar 

  • Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Google Scholar 

  • Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. 113, 12757–12762 (2016).

    Google Scholar 

  • Knyazikhin, Y. et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. 103, 32257–32276 (1998).

    Google Scholar 

  • Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).

    Google Scholar 

  • Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).

    Google Scholar 

  • Min, J. et al. Understanding spatial patterns in the drivers of greenness trends in the Sahel-Sudano-Guinean region. Big Earth Data 7, 298–317 (2023).

    Google Scholar 

  • Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 61, 404–412 (2016).

    Google Scholar 

  • Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).

    Google Scholar 

  • Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).

    Google Scholar 

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Google Scholar 

  • Running, S. W. & Zhao, M. Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm—User’s Guide V3. 28 (MODIS Land Team, 2015).

  • Yuan, W. et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 143, 189–207 (2007).

    Google Scholar 

  • Prentice, I. C. et al. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).

    Google Scholar 

  • Korson, L., Drost-hansen, W. & Millero, F. J. Viscosity of water various temperatures. J. Phys. Chem. 73, 34–39 (1969).

    Google Scholar 

  • Bao, S. et al. Environment-sensitivity functions for gross primary productivity in light use efficiency models. Agric. For. Meteorol. 312, 108708 (2022).

    Google Scholar 

  • Kalliokoski, T. et al. Decomposing sources of uncertainty in climate change projections of boreal forest primary production. Agric. For. Meteorol. 262, 192–205 (2018).

    Google Scholar 

  • Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (USGS, 2018).

  • Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Google Scholar 

  • Zheng, Y. et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12, 2725–2746 (2020).

    Google Scholar 

  • Wang, L. et al. Evaluation of the latest MODIS GPP products across multiple biomes using global eddy covariance flux data. Remote Sens 9, 418 (2017).

    Google Scholar 

  • Zhu, W., Zhao, C. & Xie, Z. An end-to-end satellite-based GPP estimation model devoid of meteorological and land cover data. Agric. For. Meteorol. 331, 109337 (2023).

    Google Scholar 

  • Bai, Y. et al. Different satellite products revealing variable trends in global gross primary production. J. Geophys. Res. 128, e2022JG006918 (2023).

    Google Scholar 

  • Baret, F. et al. Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP. IEEE Trans. Geosci. Remote Sens 44, 1794–1803 (2006).

    Google Scholar 

  • Gier, B. K. et al. Representation of the terrestrial carbon cycle in CMIP6. Biogeosciences 21, 5321–5360 (2024).

    Google Scholar 

  • Yan, K. et al. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements. Remote Sens 8, 350 (2016).

    Google Scholar 

  • Yan, K. et al. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sens 8, 460 (2016).

    Google Scholar 

  • Jin, H. et al. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: A case study in southwestern China. Int. J. Appl. Earth Obs. Geoinf. 55, 52–67 (2017).

    Google Scholar 

  • Zhang, X. et al. An insight into the internal consistency of MODIS global leaf area index products. IEEE Trans. Geosci. 62, 1–16 (2024).

  • Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Google Scholar 

  • Heinze, C. et al. ESD reviews: climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dyn. 10, 379–452 (2019).

    Google Scholar 

  • Continue Reading