The role of low subcortical iron, white matter myelin, and oligodendrocytes in schizophrenia: a quantitative susceptibility mapping and diffusion tensor imaging study

  • McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia—an overview. JAMA Psychiatry. 2020;77:201–10.

    Article 
    PubMed 

    Google Scholar 

  • Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69:776–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, et al. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry. 2022;12:264–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Progress in Neurobiology. 2017;155:96–119.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saghazadeh A, Mahmoudi M, Shahrokhi S, Mojarrad M, Dastmardi M, Mirbeyk M, et al. Trace elements in schizophrenia: a systematic review and meta-analysis of 39 studies (N = 5151 participants). Nutrition Reviews. 2020;78:278–303.

    Article 
    PubMed 

    Google Scholar 

  • Georgieff MK. Iron deficiency in pregnancy. Am J Obstet Gynecol. 2020;223:516–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stevens JR. Neuropathology of schizophrenia. Arch Gen Psychiatry. 1982;39:1131–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Casanova MF, Waldman IN, Kleinman JE. A postmortem quantitative study of iron in the globus pallidus of schizophrenic patients. Biol Psychiatry. 1990;27:143–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kornhuber J, Lange KW, Kruzik P, Rausch WD, Gabriel E, Jellinger K, et al. Iron, copper, zinc, magnesium, and calcium in postmortem brain tissue from schizophrenic patients. Biol Psychiatry. 1994;36:31–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kral VA, Lehmann HE. Further studies on the iron content of the cerebrospinal fluid in psychoses. AMA Arch Neurol Psychiatry. 1952;68:321–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lehmann HE, Kral VA. Studies on the iron content of cerebrospinal fluid in different psychotic conditions. AMA Arch Neurol Psychiatry. 1951;65:326–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lotan A, Luza S, Opazo CM, Ayton S, Lane DJR, Mancuso S, et al. Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Mol Psychiatry. 2023;28:2058–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu M, Guo Y, Cheng J, Xue K, Yang M, Song X, et al. Brain iron assessment in patients with First-episode schizophrenia using quantitative susceptibility mapping. Neuroimage Clin. 2021;31:102736.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • García Saborit M, Jara A, Muñoz N, Milovic C, Tepper A, Alliende LM, et al. Quantitative susceptibility mapping MRI in deep-brain nuclei in first-episode psychosis. Schizophr Bull. 2023;49:1355–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ravanfar P, Syeda WT, Jayaram M, Rushmore RJ, Moffat B, Lin AP, et al. In vivo 7-Tesla MRI investigation of brain iron and its metabolic correlates in chronic schizophrenia. Schizophr. 2022;8:1–11.

    Article 

    Google Scholar 

  • Sonnenschein SF, Parr AC, Larsen B, Calabro FJ, Foran W, Eack SM, et al. Subcortical brain iron deposition in individuals with schizophrenia. J Psychiatr Res. 2022;151:272–8.

    Article 
    PubMed 

    Google Scholar 

  • Sui YV, McKenna F, Bertisch H, Storey P, Anthopolos R, Goff DC, et al. Decreased basal ganglia and thalamic iron in early psychotic spectrum disorders are associated with increased psychotic and schizotypal symptoms. Mol Psychiatry. 2022;27:5144–53.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue: magnetic susceptibility of brain tissue. NMR Biomed. 2017;30:e3546.

    Article 

    Google Scholar 

  • Seehaus A, Roebroeck A, Bastiani M, Fonseca L, Bratzke H, Lori N, et al. Histological validation of high-resolution DTI in human post mortem tissue. Front Neuroanat. 2015;9:98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958;3:41–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E, et al. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation – a biochemical and histological validation study. NeuroImage. 2018;179:117–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee J, Shmueli K, Fukunaga M, van Gelderen P, Merkle H, Silva AC, et al. Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proc Natl Acad Sci USA. 2010;107:5130–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wharton S, Bowtell R. Effects of white matter microstructure on phase and susceptibility maps. Magn Reson Med. 2015;73:1258–69.

    Article 
    PubMed 

    Google Scholar 

  • Li X, Vikram DS, Lim IAL, Jones CK, Farrell JAD, van Zijl PCM. Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T. Neuroimage. 2012;62:314–30.

    Article 
    PubMed 

    Google Scholar 

  • Li W, Wu B, Avram AV, Liu C. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. NeuroImage. 2012;59:2088–97.

    Article 
    PubMed 

    Google Scholar 

  • Vano LJ, McCutcheon RA, Rutigliano G, Kaar SJ, Finelli V, Nordio G, et al. Mesostriatal dopaminergic circuit dysfunction in schizophrenia: a multimodal neuromelanin-sensitive magnetic resonance imaging and [18F]-DOPA positron emission tomography study. Biol Psychiatry. 2024;96:674–83.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vano LJ, McCutcheon RA, Sedlacik J, Kaar SJ, Rutigliano G, Nordio G, et al. Reduced brain iron and striatal hyperdopaminergia in schizophrenia: a quantitative susceptibility mapping MRI and PET study. Am J Psychiatry. 2025;182:830-9.

  • Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacol. 2024;50:164–83.

    Article 

    Google Scholar 

  • First MB. Structured clinical interview for DSM-5 disorders – clinician version (SCID-5-CV). Arlington, VA: American Psychiatric Association; 2016.

    Google Scholar 

  • Kim E, Howes OD, Veronese M, Beck K, Seo S, Park JW, et al. Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [18F]DOPA PET study. Neuropsychopharmacology. 2017;42:941–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith-Kielland A, Skuterud B, Mørland J. Urinary excretion of 11-nor-9-carboxy-delta9-tetrahydrocannabinol and cannabinoids in frequent and infrequent drug users. J Anal Toxicol. 1999;23:323–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elbejjani M, Auer R, Jacobs DR, Haight T, Davatzikos C, Goff DC, et al. Cigarette smoking and gray matter brain volumes in middle age adults: the CARDIA brain MRI sub-study. Transl Psychiatry. 2019;9:78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kirkpatrick B, Strauss GP, Nguyen L, Fischer BA, Daniel DG, Cienfuegos A, et al. The brief negative symptom scale: psychometric properties. Schizophr Bull. 2011;37:300–5.

    Article 
    PubMed 

    Google Scholar 

  • Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry (Edgmont). 2007;4:28.

    PubMed 

    Google Scholar 

  • Leucht S, Samara M, Heres S, Davis JM. Dose equivalents for antipsychotic drugs: the DDD method. Schizophr Bull. 2016;42:S90–S94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011;54:313–27.

    Article 
    PubMed 

    Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article 
    PubMed 

    Google Scholar 

  • QSM Consensus Organization Committee, Bilgic B, Costagli M, Chan K-S, Duyn J, Langkammer C, et al. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: a consensus of the ISMRM electro-magnetic tissue properties study group. Magn Reson Med. 2024;91:1834–62.

    Article 
    PubMed Central 

    Google Scholar 

  • Manera AL, Dadar M, Fonov V, Collins DL. CerebrA, registration and manual label correction of Mindboggle-101 atlas for MNI-ICBM152 template. Sci Data. 2020;7:237.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang D-R, Huang Y, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab. 2003;23:285–300.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31:1487–505.

    Article 
    PubMed 

    Google Scholar 

  • Sibgatulin R, Güllmar D, Deistung A, Enzinger C, Ropele S, Reichenbach JR. Magnetic susceptibility anisotropy in normal appearing white matter in multiple sclerosis from single-orientation acquisition. NeuroImage: Clin. 2022;35:103059.

    Article 
    PubMed 

    Google Scholar 

  • Sibgatulin R, Güllmar D, Deistung A, Ropele S, Reichenbach JR. In vivo assessment of anisotropy of apparent magnetic susceptibility in white matter from a single orientation acquisition. NeuroImage. 2021;241:118442.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tournier J-D, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35:1459–72.

    Article 
    PubMed 

    Google Scholar 

  • Wasserthal J, Neher P, Maier-Hein KH. TractSeg – fast and accurate white matter tract segmentation. NeuroImage. 2018;183:239–53.

    Article 
    PubMed 

    Google Scholar 

  • McCutcheon RA, Brown K, Nour MM, Smith SM, Veronese M, Zelaya F, et al. Dopaminergic organization of striatum is linked to cortical activity and brain expression of genes associated with psychiatric illness. Sci Adv. 2021;7:eabg1512.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE, Scarpazza C, et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc Natl Acad Sci USA. 2019;116:9604–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Markello RD, Arnatkeviciute A, Poline J-B, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. eLife. 2021;10:e72129.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnatkeviciute A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage. 2019;189:353–67.

    Article 
    PubMed 

    Google Scholar 

  • Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44:83–98.

    Article 
    PubMed 

    Google Scholar 

  • Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage. 2011;56:455–75.

    Article 
    PubMed 

    Google Scholar 

  • Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project. arXiv:1309.0238. 2013. https://arxiv.org/abs/1309.0238.

  • Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps with spatial autocorrelation. NeuroImage. 2020;220:117038.

    Article 
    PubMed 

    Google Scholar 

  • Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLOS ONE. 2011;6:e21800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol. 2018;36:70–80.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112:7285–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reinert A, Morawski M, Seeger J, Arendt T, Reinert T. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci. 2019;20:25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raabe FJ, Slapakova L, Rossner MJ, Cantuti-Castelvetri L, Simons M, Falkai PG, et al. Oligodendrocytes as a new therapeutic target in schizophrenia: from histopathological findings to neuron-oligodendrocyte interaction. Cells. 2019;8:1496.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang C, Martins-Bach AB, Alfaro-Almagro F, Douaud G, Klein JC, Llera A, et al. Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging. Nat Neurosci. 2022;25:818–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry. 2018;23:1261–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martins-de-Souza D, Guest PC, Reis-de-Oliveira G, Schmitt A, Falkai P, Turck CW. An overview of the human brain myelin proteome and differences associated with schizophrenia. World J Biol Psychiatry. 2021;22:271–87.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reis-de-Oliveira G, Zuccoli GS, Fioramonte M, Schimitt A, Falkai P, Almeida V, et al. Digging deeper in the proteome of different regions from schizophrenia brains. J Proteomics. 2020;223:103814.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley KC. Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res. 2007;151:179–88.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lake EMR, Steffler EA, Rowley CD, Sehmbi M, Minuzzi L, Frey BN, et al. Altered intracortical myelin staining in the dorsolateral prefrontal cortex in severe mental illness. Eur Arch Psychiatry Clin Neurosci. 2017;267:369–76.

    Article 
    PubMed 

    Google Scholar 

  • Larsen B, Bourque J, Moore TM, Adebimpe A, Calkins ME, Elliott MA, et al. Longitudinal development of brain iron is linked to cognition in youth. J Neurosci. 2020;40:1810–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larsen B, Olafsson V, Calabro F, Laymon C, Tervo-Clemmens B, Campbell E, et al. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat Commun. 2020;11:846.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolomeets NS, Uranova NA. Numerical density of oligodendrocytes and oligodendrocyte clusters in the anterior putamen in major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci. 2020;270:841–50.

    Article 
    PubMed 

    Google Scholar 

  • Vostrikov VM, Uranova NA. Reduced density of oligodendrocytes and oligodendrocyte clusters in the caudate nucleus in major psychiatric illnesses. Schizophr Res. 2020;215:211–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kolomeets NS, Uranova NA. Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2019;269:379–86.

    Article 
    PubMed 

    Google Scholar 

  • Hof PR, Haroutunian V, Friedrich VL, Byne W, Buitron C, Perl DP, et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry. 2003;53:1075–85.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vostrikov VM, Uranova NA, Orlovskaya DD. Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res. 2007;94:273–80.

    Article 
    PubMed 

    Google Scholar 

  • Yap CX, Vo DD, Heffel MG, Bhattacharya A, Wen C, Yang Y, et al. Brain cell-type shifts in Alzheimer’s disease, autism, and schizophrenia interrogated using methylomics and genetics. Sci Adv. 2024;10:eadn7655.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19:15–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merritt K, McCutcheon RA, Aleman A, Ashley S, Beck K, Block W, et al. Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis. Mol Psychiatry. 2023;28:2039–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suárez-Pozos E, Thomason EJ, Fuss B. Glutamate transporters: expression and function in oligodendrocytes. Neurochem Res. 2019. https://doi.org/10.1007/s11064-018-02708-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Research Bulletin. 2009;78:69–74.

    Article 
    PubMed 

    Google Scholar 

  • Nelson AJD. The anterior thalamic nuclei and cognition: a role beyond space? Neurosci Biobehav Rev. 2021;126:1–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mair RG, Francoeur MJ, Krell EM, Gibson BM. Where actions meet outcomes: medial prefrontal cortex, Central Thalamus, and the Basal Ganglia. Front Behav Neurosci. 2022;16:928610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex. 2016;26:3508–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howes OD, Shatalina E. Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. Biol Psychiatry. 2022;92:501–13.

    Article 
    PubMed 

    Google Scholar 

  • Cocchi L, Harding IH, Lord A, Pantelis C, Yucel M, Zalesky A. Disruption of structure–function coupling in the schizophrenia connectome. NeuroImage: Clin. 2014;4:779–87.

    Article 
    PubMed 

    Google Scholar 

  • Lorio S, Sedlacik J, So P-W, Parkes HG, Gunny R, Löbel U, et al. Quantitative MRI susceptibility mapping reveals cortical signatures of changes in iron, calcium and zinc in malformations of cortical development in children with drug-resistant epilepsy. Neuroimage. 2021;238:118102.

    Article 
    PubMed 

    Google Scholar 

  • Tortora D, Severino M, Sedlacik J, Toselli B, Malova M, Parodi A, et al. Quantitative susceptibility map analysis in preterm neonates with germinal matrix-intraventricular hemorrhage. J Magn Reson Imaging. 2018;48:1199–207.

    Article 
    PubMed 

    Google Scholar 

  • Lancione M, Tosetti M, Donatelli G, Cosottini M, Costagli M. The impact of white matter fiber orientation in single-acquisition quantitative susceptibility mapping. NMR in Biomedicine. 2017;30:e3798.

    Article 

    Google Scholar 

  • Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV. Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging. 2010;31:482.

    Article 
    PubMed 

    Google Scholar 

  • Karsa A, Punwani S, Shmueli K. An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the head-and-neck region. Magn Reson Med. 2020;84:3206–22.

    Article 
    PubMed 

    Google Scholar 

  • Li W, Wang N, Yu F, Han H, Cao W, Romero R, et al. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. Neuroimage. 2015;108:111–22.

    Article 
    PubMed 

    Google Scholar 

  • Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging. 2005;23:1–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Colgan TJ, Knobloch G, Reeder SB, Hernando D. Sensitivity of quantitative relaxometry and susceptibility mapping to microscopic iron distribution. Magn Reson Med. 2020;83:673–80.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dietrich O, Levin J, Ahmadi S-A, Plate A, Reiser MF, Bötzel K, et al. MR imaging differentiation of Fe2+ and Fe3+ based on relaxation and magnetic susceptibility properties. Neuroradiology. 2017;59:403–9.

    Article 
    PubMed 

    Google Scholar 

  • Birkl C, Birkl-Toeglhofer AM, Kames C, Goessler W, Haybaeck J, Fazekas F, et al. The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain. NeuroImage. 2020;220:117080.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghassaban K, Liu S, Jiang C, Haacke EM. Quantifying iron content in magnetic resonance imaging. NeuroImage. 2019;187:77–92.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading