Systematic hyperparameter analysis of GRU and LSTM across demand pattern types: a demand-characteristic-driven meta-learning framework for rapid optimization

  • Soto-Ferrari, M., Bhattacharyya, K., Schikora, P. & POST-BaLSTM: A bagged LSTM forecasting ensemble embedded with a postponement framework to target the semiconductor shortage in the automotive industry. Comput. Ind. Eng. 185, 109602 (2023).

    Google Scholar 

  • Lee, K. H., Abdollahian, M., Schreider, S. & Taheri, S. Supply chain demand forecasting and price optimisation models with substitution effect. Mathematics 11, 1–28 (2023).

    Google Scholar 

  • Wang, C. H. & Chen, T. Y. Combining biased regression with machine learning to conduct supply chain forecasting and analytics for printing circuit board. Int. J. Syst. Sci. Oper. Logist. 9, 143–154 (2022).

    Google Scholar 

  • Huber, J. & Stuckenschmidt, H. Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int. J. Forecast. 36, 1420–1438 (2020).

    Google Scholar 

  • Weng, T., Liu, W. & Xiao, J. Supply chain sales forecasting based on LightGBM and LSTM combination model. Ind. Manag Data Syst. 120, 265–279 (2020).

    Google Scholar 

  • Omar, H., Klibi, W., Babai, M. Z. & Ducq, Y. Basket data-driven approach for omnichannel demand forecasting. Int. J. Prod. Econ. 257, 108748 (2023).

    Google Scholar 

  • Panda, S. K. & Mohanty, S. N. Time series forecasting and modeling of food demand supply chain based on regressors analysis. IEEE Access. 11, 42679–42700 (2023).

    Google Scholar 

  • Noh, J., Park, H. J., Kim, J. S. & Hwang, S. J. Gated recurrent unit with genetic algorithm for product demand forecasting in supply chain management. Mathematics 8, (2020).

  • Li, K. et al. Capacity and output power Estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline Estimation. Appl. Energy. 253, 113595 (2019).

    Google Scholar 

  • Li, G. & Zhong, X. Parking demand forecasting based on improved complete ensemble empirical mode decomposition and GRU model. Eng. Appl. Artif. Intell. 119, 105717 (2023).

    Google Scholar 

  • Kim, Y. & Park, K. Outlier-Aware demand prediction using recurrent neural Network-Based models and statistical approach. IEEE Access. 11, 129285–129299 (2023).

    Google Scholar 

  • Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 1–9. At http://arxiv.org/abs/1412.3555 (2014)

  • Saeed, N., Nguyen, S., Cullinane, K., Gekara, V. & Chhetri, P. Forecasting container freight rates using the prophet forecasting method. Transp. Policy. 133, 86–107 (2023).

    Google Scholar 

  • Bommidi, B. S., Teeparthi, K. & Kosana, V. Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function. Energy 265, 126383 (2023).

    Google Scholar 

  • Tian, Z., Liu, W., Jiang, W. & Wu, C. CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability. Energy 293, 127019 (2024).

    Google Scholar 

  • Zhou, H. et al. Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. (2021).

  • Zhou, T., Wen, Q., Wang, X., Sun, L. & Jin, R. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. (2022).

  • Fan, H. Enhancing Long-Term time series forecasting via hybrid DLinear-PatchTST ensemble framework. Appl. Comput. Eng. 0, 145–150 (2025).

    Google Scholar 

  • Lin, P. et al. Multi-timescale short-term urban water demand forecasting based on an improved PatchTST model. J. Hydrol. 651, 132599 (2025).

    Google Scholar 

  • Ghimire, S., Deo, R. C. & Casillas-pérez, D. Salcedo-sanz, S. Electricity demand uncertainty modeling with Temporal Convolution neural network models. Renew. Sustain. Energy Rev. 209, 115097 (2025).

    Google Scholar 

  • Sun, Y., Ding, J., Liu, Z. & Wang, J. Combined forecasting tool for renewable energy management in sustainable supply chains. Comput. Ind. Eng. 179, 109237 (2023).

    Google Scholar 

  • Bischl, B. et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip Rev. Data Min. Knowl. Discov. 13, 1–43 (2023).

    Google Scholar 

  • Wojciuk, M., Swiderska-Chadaj, Z., Siwek, K. & Gertych, A. Improving classification accuracy of fine-tuned CNN models: impact of hyperparameter optimization. Heliyon 10, e26586 (2024).

    Google Scholar 

  • Valencia, C. H., Vellasco, M. M. B. R. & Figueiredo, K. Echo state networks: novel reservoir selection and hyperparameter optimization model for time series forecasting. Neurocomputing 545, 126317 (2023).

    Google Scholar 

  • Dhake, H., Kashyap, Y. & Kosmopoulos, P. Algorithms for hyperparameter tuning of LSTMs for time series forecasting. Remote Sens. 15, 1–17 (2023).

    Google Scholar 

  • Wu, X. et al. AutoCTS+: Joint Neural Architecture and Hyperparameter Search for Correlated Time Series Forecasting. Proc. ACM Manag. Data 1Association for Computing Machinery, (2023).

  • Pranolo, A., Mao, Y., Wibawa, A. P., Utama, A. B. P. & Dwiyanto, F. A. Robust LSTM with Tuned-PSO and Bifold-Attention mechanism for analyzing multivariate Time-Series. IEEE Access. 10, 78423–78434 (2022).

    Google Scholar 

  • Chen, X. et al. A novel loss function of deep learning in wind speed forecasting. Energy 238, 121808 (2022).

    Google Scholar 

  • Nussipova, F., Rysbekov, S., Abdiakhmetova, Z. & Kartbayev, A. Optimizing loss functions for improved energy demand prediction in smart power grids. Int. J. Electr. Comput. Eng. 14, 3415–3426 (2024).

    Google Scholar 

  • Kenaka, S. P., Cakravastia, A., Ma’ruf, A. & Cahyono, R. T. Enhancing intermittent spare part demand forecasting: A novel ensemble approach with focal loss and SMOTE. Logistics 9, 1–25 (2025).

    Google Scholar 

  • Syntetos, A. A., Boylan, J. E. & Croston, J. D. On the categorization of demand patterns. J. Oper. Res. Soc. 56, 495–503 (2005).

    Google Scholar 

  • Rožanec, J. M., Kaži, B., Škrjanc, M., Fortuna, B. Automotive-OEM-demand-forecasting-A-comparative-study-of-forecasting-algorithms-and-strategiesApplied-Sciences-Switzerland (1).pdf (2021).

  • Szilagyi, E. et al. Cost-effective energy management of an islanded microgrid. Energy Rep. 10, 4516–4537 (2023).

    Google Scholar 

  • Huskova, K. & Dyntar, J. Increasing efficiency in inventory control of products with sporadic demand using simulation. Acta Inf. Pragensia. 11, 254–264 (2022).

    Google Scholar 

  • Hasan, N., Ahmed, N. & Ali, S. M. Improving sporadic demand forecasting using a modified k-nearest neighbor framework. Eng. Appl. Artif. Intell. 129, 107900 (2024).

    Google Scholar 

  • Zhang, Q. & Zhou, X. Assessing peak-to-mean ratios of odour intensity in the atmosphere near swine operations. Atmosphere (Basel). 11, 1102 (2020).

    Google Scholar 

  • Barry, P. J. A note on peak-to-mean concentration ratios. Boundary-Layer Meteorol. 2, 122–126 (1971).

    Google Scholar 

  • Wunderlich, A. & Sanders, A. The expected Peak-to-Average power ratio of white Gaussian noise in sampled I/Q data. IEEE Trans. Instrum. Meas. 74, 1–8 (2025).

    Google Scholar 

  • Ahmad, T. & Chen, H. Deep learning for multi-scale smart energy forecasting. Energy 175, 98–112 (2019).

    Google Scholar 

  • Shen, Q. et al. Short-Term load forecasting based on Multi-Scale ensemble deep learning neural network. IEEE Access. 11, 111963–111975 (2023).

    Google Scholar 

  • Fang, X. & Yuan, Z. Performance enhancing techniques for deep learning models in time series forecasting. Eng. Appl. Artif. Intell. 85, 533–542 (2019).

    Google Scholar 

  • Ham, Y. G., Kim, J. H. & Luo, J. J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).

    Google Scholar 

  • Cheng, M., Fang, F., Kinouchi, T., Navon, I. M. & Pain, C. C. Long lead-time daily and monthly streamflow forecasting using machine learning methods. J. Hydrol. 590, 125376 (2020).

    Google Scholar 

  • Papacharalampous, G. A., Tyralis, H. & Koutsoyiannis, D. Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes introduction 1. 1 time series forecasting in hydrology and beyond. Eur. Water. 59, 161–168 (2017).

    Google Scholar 

  • Niu, T., Wang, J., Lu, H., Yang, W. & Du, P. Developing a deep learning framework with two-stage feature selection for multivariate financial time series forecasting. Expert Syst. Appl. 148, 113237 (2020).

    Google Scholar 

  • Zhang, X. et al. Multi-period learning for financial time series forecasting. 2848–2859 (2025). https://doi.org/10.1145/3690624.3709422

  • Livieris, I. E., Stavroyiannis, S., Pintelas, E. & Pintelas, P. A novel validation framework to enhance deep learning models in time-series forecasting. Neural Comput. Appl. 32, 17149–17167 (2020).

    Google Scholar 

  • Fang, J. et al. An attention-based deep learning model for multi-horizon time series forecasting by considering periodic characteristic. Comput. Ind. Eng. 185, 109667 (2023).

    Google Scholar 

  • Kolassa, S. & Schütz, W. Advantages of the MAD/Mean ratio over the MAPE. Foresight Int. J. Appl. Forecast. 6, 40–43 (2007).

    Google Scholar 

  • Makridakis, S., Spiliotis, E. & Assimakopoulos, V. The M4 competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36, 54–74 (2020).

    Google Scholar 

  • Makridakis, S., Spiliotis, E. & Assimakopoulos, V. The M5 competition: Background, organization, and implementation. Int. J. Forecast. 38, 1325–1336 (2022).

    Google Scholar 

  • Continue Reading