Rajarajeshwari, G. & Selvi, G. C. Application of artificial intelligence for classification, segmentation, early detection, early diagnosis, and grading of diabetic retinopathy from fundus retinal images: a comprehensive review. IEEE Access vol no 12, pp-172499-172536 (2024).
Yao, J. et al. Novel artificial intelligence algorithms for diabetic retinopathy and diabetic macular edema. Eye Vis. 11 (1), 23 (2024).
Alsadoun, L. et al. Artificial intelligence (AI)-Enhanced detection of diabetic retinopathy from fundus images: the current landscape and future directions. Cureus, 16(8),1-8 (2024).
Ahmed, H. B. & Alzuoubi, M. Designing accessible virtual reality interfaces using reinforcement learning for users with motor and sensory impairments. PatternIQ Min. 2 (1), 1–12. https://doi.org/10.70023/sahd/250201 (2025).
Ikram, A. & Imran, A. ResViT FusionNet model: an explainable AI-driven approach for automated grading of diabetic retinopathy in retinal images. Comput. Biol. Med. 186, 109656 (2025).
Peters, I. & Kamrul, G. Applications AI-driven solar energy management system for smart grids using predictive analytics and adaptive control. J. Quantum Nano-Green Environ. Syst. 1 (1), 14–24. https://doi.org/10.70023/qnges.251102 (2025).
Grzybowski, A. et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye 34 (3), 451–460 (2020).
Chen, Q., Keenan, T. D., Agron, E., Allot, A., Guan, E., Duong, B., … Lu, Z. (2024).Towards Accountable AI-Assisted Eye Disease Diagnosis: Workflow Design, External Validation,and Continual Learning. arXiv preprint arXiv:2409.15087.
Vujosevic, S. et al. Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol. 8 (4), 337–347 (2020).
Hogg, J. A mixed methods evaluation of artificial intelligence-enabled macula services (Doctoral dissertation, Newcastle University, 2024).
Alyoubi, W. L., Shalash, W. M. & Abulkhair, M. F. Diabetic retinopathy detection through deep learning techniques: A review. Inf. Med. Unlocked. 20, 100377 (2020).
Das, D., Biswas, S. K. & Bandyopadhyay, S. A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Multimedia Tools Appl. 81 (18), 25613–25655 (2022).
Oganov, A. C., Seddon, I., Jabbehdari, S., Uner, O. E., Fonoudi, H., Yazdanpanah,G., … Arevalo, J. F. (2023). Artificial intelligence in retinal image analysis: Development,advances, and challenges. Survey of ophthalmology, 68(5), 905–919.
Kaur, J., Mittal, D. & Singla, R. Diabetic retinopathy diagnosis through computer-aided fundus image analysis: a review. Arch. Comput. Methods Eng. 29 (3), 1673–1711 (2022).
Stranjak, A. & Campagna, S. Decentralised agent-based medical image reconstruction. Procedia Comput. Sci. 207, 2106–2115 (2022).
Sivakumar, N., Mura, C. & Peirce, S. M. Innovations in integrating machine learning and agent-based modeling of biomedical systems. Front. Syst. Biology. 2, 959665 (2022).
Khan, A. et al. A survey of the vision Transformers and their CNN-transformer based variants. Artif. Intell. Rev. 56 (Suppl 3), 2917–2970 (2023).
Long, H. Hybrid design of CNN and vision transformer: A review. In Proceedings of the 2024 7th International Conference on Computer Information Science and Artificial Intelligence (121–127). (2024).
Annamalai, M. et al. Revolutionizing Medical Diagnostics with Transparent AI-Driven Decision Support Systems. In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC) (1–7). IEEE. (2024).
Soumya, M. A. A. K. AI-Driven Insights: Revolutionizing Health Diagnostics and Treatment (Budha publication, 2024).
Yamani, I. U. & Basari, B. Leveraging convolutional neural networks for automated detection and grading of diabetic retinopathy from fundus images. Jurnal Teknik Elektro. 15 (2), 68–73 (2023).
Niu, Y., Gu, L., Zhao, Y. & Lu, F. Explainable diabetic retinopathy detection and retinal image generation. IEEE J. Biomedical Health Inf. 26 (1), 44–55 (2021).
Khan, T. M., Soomro, T. A. & Razzak, I. The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective. arXiv preprint arXiv:2505.20810. (2025).
Mohammad, N. K., Rajab, I. A., Al-Taie, R. H., Ismail, M. & Mohammad, N. Machine learning and vision: advancing the frontiers of diabetic cataract management. Cureus, 16(8),1-11 (2024).
Jacoba, C. M. P., Doan, D., Salongcay, R. P., Aquino, L. A. C., Silva, J. P. Y., Salva,C. M. G., … Silva, P. S. (2023). Performance of automated machine learning for diabetic retinopathy image classification from multi-field handheld retinal images. Ophthalmology Retina, 7(8), 703–712.
Rêgo, S., Monteiro-Soares, M., Dutra-Medeiros, M., Dias, C., Nunes, F. & C., & Exploring the feasibility of opportunistic diabetic retinopathy screening with handheld fundus cameras in primary care: insights from Doctors and nurses. Diabetology 5 (6), 566–583 (2024).
Chawla, R., Karkhanis, P., Shah, M., Das, A., Sharma, R., Almaula, D., … Tandon, R.(2025). Artificial intelligence for advancing eye care in resource-poor settings:Assessing the predictive accuracy of an AI-model for diabetic retinopathy screening in India. Global Epidemiology, 100209, (2025).
Son, J., Shin, J. Y., Kong, S. T., Park, J., Kwon, G., Kim, H. D., … Park, S. J. (2023).An interpretable and interactive deep learning algorithm for a clinically applicable retinal fundus diagnosis system by modelling finding-disease relationship. Scientific Reports, 13(1), 5934, (2023).
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data