Diagnosing the innovation atmosphere of industrial parks through urban spatial perception: a multimodal large language model approach

  • Wu, Y. & Gao, X. Can the establishment of eco-industrial parks promote urban green innovation? Evidence from China. J. Clean. Prod. 341, 130855 (2022).

    Google Scholar 

  • Ungureanu, P., Cochis, C., Bertolotti, F., Mattarelli, E. & Scapolan, A. C. Multiplex boundary work in innovation projects: the role of collaborative spaces for cross-functional and open innovation. Eur. J. Innov. Manage. 24, 984–1010 (2020).

    Google Scholar 

  • Xu, J., Qiu, B., Zhang, F. & Zhang, J. Restorative effects of pocket parks on mental fatigue among young adults: A comparative experimental study of three park types. Forests 15, 286 (2024).

    Google Scholar 

  • Sallis, J. F., Johnson, M. F., Calfas, K. J., Caparosa, S. & Nichols, J. F. Assessing perceived physical environmental variables that May influence physical activity. Res. Q. Exerc. Sport. https://doi.org/10.1080/02701367.1997.10608015 (1997). https://www.tandfonline.com/doi/abs/

    Google Scholar 

  • Ewing, R. H. et al. Measuring Urban Design: Metrics for Livable Places Vol. 200 (Island, 2013).

  • B., M. A. The uses of big data in cities. Big Data. https://doi.org/10.1089/big.2013.0042 (2014). doi:10.1089/big.2013.0042.

    Google Scholar 

  • Caruelle, D., Gustafsson, A., Shams, P. & Lervik-Olsen, L. The use of electrodermal activity (EDA) measurement to understand consumer emotions–a literature review and a call for action. J. Bus. Res. 104, 146–160 (2019).

    Google Scholar 

  • Kim, M., Cheon, S. & Kang, Y. Use of electroencephalography (EEG) for the analysis of emotional perception and fear to nightscapes. Sustainability 11, 233 (2019).

    Google Scholar 

  • Reece, R., Bornioli, A., Bray, I. & Alford, C. Exposure to green and historic urban environments and mental well-being: results from EEG and psychometric outcome measures. Int. J. Environ. Res. Public Health. 19, 13052 (2022).

    Google Scholar 

  • Liang, H., Zhang, J., Li, Y., Zhu, Z. & Wang, B. Automatic estimation for visual quality changes of street space via street-view images and multimodal large language models. (2023). https://www.preprints.org/frontend/manuscript/1c3c24d0ed8f219c5cfacb49b1c49c12/download_pub

  • Malekzadeh, M., Willberg, E., Torkko, J. & Toivonen, T. Urban attractiveness according to chatgpt: contrasting AI and human insights. Comput. Environ. Urban Syst. 117, 102243 (2025).

    Google Scholar 

  • Blečić, I., Saiu, V. & Trunfio, A. Enhancing urban walkability assessment with multimodal large Language models. In Computational Science and its Applications – ICCSA 2024 Workshops (eds Gervasi, O. et al.) 394–411 (Springer Nature Switzerland, 2024). https://doi.org/10.1007/978-3-031-65282-0_26.

    Google Scholar 

  • Ki, D., Lee, H., Park, K., Ha, J. & Lee, S. Measuring nuanced walkability: leveraging chatgpt’s vision reasoning with multisource Spatial data. Comput. Environ. Urban Syst. 121, 102319 (2025).

    Google Scholar 

  • Melnychenko, A., Shevchuk, N., Babiy, I., Blyznyuk, T. & Akimova, O. Transformation of industrial parks in the direction of providing of the purposes achievement of sustainable development. Int. J. Comput. Sci. Netw. Secur. 22, 7–14 (2022).

    Google Scholar 

  • Phan, P. H., Siegel, D. S. & Wright, M. Science parks and incubators: Observations, synthesis and future research. J. Bus. Ventur. 20, 165–182 (2005).

    Google Scholar 

  • Côté, R. P. & Cohen-Rosenthal, E. Designing eco-industrial parks: A synthesis of some experiences. J. Clean. Prod. 6, 181–188 (1998).

    Google Scholar 

  • Katz, B. & Wagner, J. The rise of urban innovation districts. Harv Bus. Rev 12. https://hbr.org/2014/11/the-rise-of-urban-innovation-districts (2014).

  • Amabile, T. M., Barsade, S. G., Mueller, J. S. & Staw, B. M. Affect and creativity at work. Adm. Sci. Q. 50, 367–403 (2005).

    Google Scholar 

  • Florida, R. Cities and the Creative Class (Routledge, 2005).

  • Glaeser, E. L. & Resseger, M. G. The complementarity between cities and skills. J. Reg. Sci. 50, 221–244 (2010).

    Google Scholar 

  • Wang, J., Tong, C. & Hu, X. Policy zoning method for innovation districts to sustainably develop the knowledge-economy: A case study in hangzhou, China. Sustainability 13, 3503 (2021).

    Google Scholar 

  • Bloom, N., Van Reenen, J. & Williams, H. A toolkit of policies to promote innovation. J. Economic Perspect. 33, 163–184 (2019).

    Google Scholar 

  • Maennig, W. & Ölschläger, M. Innovative milieux and regional competitiveness: the role of associations and chambers of commerce and industry in Germany. Reg. Stud. 45, 441–452 (2011).

    Google Scholar 

  • Kim, Y. A. & Hipp, J. R. Density, diversity, and design: three measures of the built environment and the Spatial patterns of crime in street segments. J. Criminal Justice. 77, 101864 (2021).

    Google Scholar 

  • Wang, X., Zhang, Y., Yu, D., Qi, J. & Li, S. Investigating the Spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in beijing, China. Land. Use Policy. 119, 106162 (2022).

    Google Scholar 

  • Dabrowska, J. Measuring the success of science parks: Performance monitoring and evaluation. (2011). https://repositorio.minciencias.gov.co/bitstream/handle/20.500.14143/265/1622-DABROWSKA_2011_MEASURING_TH.PDF?sequence=1

  • Bigliardi, B., Dormio, A. I., Nosella, A. & Petroni, G. Assessing science parks’ performances: directions from selected Italian case studies. Technovation 26, 489–505 (2006).

    Google Scholar 

  • Lu, J. et al. IOP Publishing,. Evaluation on synergetic innovation ability of environmental protection industrial park. in IOP Conference Series: Earth and Environmental Science vol. 598 012079 (2020).

  • Anderson, N. R. & West, M. A. Measuring climate for work group innovation: development and validation of the team climate inventory. J. Organiz Behav. 19, 235–258 (1998).

    Google Scholar 

  • Rui, J., Xu, Y., Cai, C. & Li, X. Leveraging large Language models for tourism research based on 5D framework: A collaborative analysis of tourist sentiments and Spatial features. Tour. Manag. 108, 105115 (2025).

    Google Scholar 

  • Liang, J. et al. GSV2SVF-an interactive GIS tool for sky, tree and Building view factor Estimation from street view photographs. Build. Environ. 168, 106475 (2020).

    Google Scholar 

  • Zhang, L. et al. Quantifying the urban visual perception of Chinese traditional-style Building with street view images. Appl. Sci. 10, 5963 (2020).

    Google Scholar 

  • He, N. & Li, G. Urban neighbourhood environment assessment based on street view image processing: A review of research trends. Environ. Challenges. 4, 100090 (2021).

    Google Scholar 

  • Kostikova, A. et al. LLLMs: A data-driven survey of evolving research on limitations of large Language models. Preprint at. https://doi.org/10.48550/arXiv.2505.19240 (2025).

    Google Scholar 

  • Hadi, M. U. et al. A survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Preprints (2023). https://www.authorea.com/doi/full/10.36227/techrxiv.23589741.v3?commit=257b583a651fe9d363a4bce30dd48b38eb5a2bea

  • Liu, Y. et al. Sora: A review on background, technology, limitations, and opportunities of large vision models. Preprint at. https://doi.org/10.48550/arXiv.2402.17177 (2024).

    Google Scholar 

  • Wu, J. et al. Reinforcing Spatial reasoning in vision-language models with interwoven thinking and visual drawing. Preprint at. https://doi.org/10.48550/arXiv.2506.09965 (2025).

    Google Scholar 

  • Belaroussi, R. Subjective assessment of a built environment by ChatGPT, gemini and grok: comparison with architecture, engineering and construction expert perception. Big Data Cogn. Comput. 9, 100 (2025).

    Google Scholar 

  • Li, L., Ye, Y., Jiang, B., Zeng, W. & Georeasoner Geo-localization with reasoning in street views using a large vision-language model. in Forty-first International Conference on Machine Learning (2024).

  • Zhang, J., Li, Y., Fukuda, T. & Wang, B. Urban safety perception assessments via integrating multimodal large Language models with street view images. Cities 165, 106122 (2025).

    Google Scholar 

  • Shang, Y. et al. UrbanWorld: an urban world model for 3D City generation. Preprint at. https://doi.org/10.48550/arXiv.2407.11965 (2024).

    Google Scholar 

  • Zhang, D., Xiong, Z. & Zhu, X. Evaluation of thermal comfort in urban commercial space with vision–language-model-based agent model. Land 14, 786 (2025).

    Google Scholar 

  • Falotico, R. & Quatto, P. Fleiss’ kappa statistic without paradoxes. Qual. Quant. 49, 463–470 (2015).

    Google Scholar 

  • Ulrich, R. S. Stress reduction theory. D. Marchand, E. Pol, & K. Weiss (Eds.) 100, 143–146 (2023).

  • Basu, A., Duvall, J. & Kaplan, R. Attention restoration theory: exploring the role of soft fascination and mental bandwidth. Environ. Behav. 51, 1055–1081 (2019).

    Google Scholar 

  • Pham, T. P. & Sanocki, T. Human attention restoration, flow, and creativity: A conceptual integration. J. Imaging. 10, 83 (2024).

    Google Scholar 

  • Kothencz, G. & Blaschke, T. Urban parks: visitors’ perceptions versus Spatial indicators. Land. Use Policy. 64, 233–244 (2017).

    Google Scholar 

  • Dean, J. T. Noise, cognitive function, and worker productivity. Am. Economic Journal: Appl. Econ. 16, 322–360 (2024).

    Google Scholar 

  • Moultrie, J. et al. Innovation spaces: towards a framework for Understanding the role of the physical environment in innovation. Creativity Innov. Manage. 16, 53–65 (2007).

    Google Scholar 

  • Wu, K., Wang, Y., Zhang, H., Liu, Y. & Ye, Y. Impact of the built environment on the Spatial heterogeneity of regional innovation productivity: evidence from the Pearl river delta, China. Chin. Geogr. Sci. 31, 413–428 (2021).

    Google Scholar 

  • Stokols, D., Clitheroe, C. & Zmuidzinas, M. Qualities of work environments that promote perceived support for creativity. Creativity Res. J. 14, 137–147 (2002).

    Google Scholar 

  • Roe, D. Naturally artificial: the pre-raphaelite garden enclosed. Vic. Poetry. 57, 131–153 (2019).

    Google Scholar 

  • Daniel, G. R. Safe spaces for enabling the creative process in classrooms. Australian J. Teacher Educ. (Online). 45, 41–57 (2020).

    Google Scholar 

  • Caivano, J. L. Research on color in architecture and environmental design: brief history, current developments, and possible future. Color. Res. Application. 31, 350–363 (2006).

    Google Scholar 

  • Azudin, N., Ismail, M. N. & Taherali, Z. Knowledge sharing among workers: A study on their contribution through informal communication in cyberjaya, Malaysia. Knowl. Manage. E-Learning. 1, 139 (2009).

    Google Scholar 

  • Yun, J. J., Zhao, X., Yigitcanlar, T., Lee, D. & Ahn, H. Architectural design and open innovation symbiosis: insights from research campuses, manufacturing systems, and innovation districts. Sustainability 10, 4495 (2018).

    Google Scholar 

  • Moritz, E. The tapestry metaphor: Weaving meaning from threads. Experimenting with gemini Pro2. 5. (2025). https://www.researchgate.net/profile/Elan-Moritz/publication/390527921_The_Tapestry_Metaphor_Weaving_Meaning_from_Threads_Experimenting_with_Gemini_Pro25/links/67f1e276e8041142a16a2991/The-Tapestry-Metaphor-Weaving-Meaning-from-Threads-Experimenting-with-Gemini-Pro25.pdf

  • Comanici, G. et al. Gemini 2.5: pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. Preprint at. https://doi.org/10.48550/arXiv.2507.06261 (2025).

    Google Scholar 

  • OpenAI et al. GPT-4o system card. Preprint at. https://doi.org/10.48550/arXiv.2410.21276 (2024).

    Google Scholar 

  • Wang, Y. et al. AICrypto: A comprehensive benchmark for evaluating cryptography capabilities of large Language models. Preprint at. https://doi.org/10.48550/arXiv.2507.09580 (2025).

    Google Scholar 

  • Qiu, Y. et al. Human-aligned bench: Fine-grained assessment of reasoning ability in MLLMs vs. Hum. Preprint at. https://doi.org/10.48550/arXiv.2505.11141 (2025).

    Google Scholar 

  • Suzuki, K. Claude 3.5 sonnet indicated improved TNM classification on radiology report of pancreatic cancer. Jpn J. Radiol. 43, 56–57 (2025).

    Google Scholar 

  • Caplan, R. D. & Van Harrison, R. Person-environment fit theory: some history, recent developments, and future directions. J. Soc. Issues. 49, 253–275 (1993).

    Google Scholar 

  • Xu, L., Zhang, Y., Li, F. & Yin, J. Perceptual difference of urban public spaces between design professionals and ‘laypersons’: Evidence, health implications and ready-made urban design templates. Indoor Built Environ. https://doi.org/10.1177/1420326X221116318 (2022).

    Google Scholar 

  • Neilson, B. N., Craig, C. M., Travis, A. T. & Klein, M. I. A review of the limitations of attention restoration theory and the importance of its future research for the improvement of well-being in urban living. Visions Sustain. https://doi.org/10.13135/2384-8677/3323 (2019).

    Google Scholar 

  • Liu, Y., Zhang, J., Liu, C. & Yang, Y. A review of attention restoration theory: implications for designing restorative environments. Sustainability 16, 3639 (2024).

    Google Scholar 

  • Maslow, A. & Lewis, K. J. Maslow’s hierarchy of needs. Salenger Incorporated. 14, 987–990 (1987).

    Google Scholar 

  • Shafique, A. Hierarchy of user’s need for Spatial organisation in public open spaces. Eur. J. Archit. Urban Plann. 3, 1–8 (2024).

    Google Scholar 

  • Friedkin, N. A test of structural features of granovetter’s strength of weak ties theory. Social Networks. 2, 411–422 (1980).

    Google Scholar 

  • Markoç, İ. Twitter in the context of oldenburg’s third place theory. IBAD 79–89. https://doi.org/10.21733/ibad.610335 (2019).

  • Continue Reading