Wu, Y. & Gao, X. Can the establishment of eco-industrial parks promote urban green innovation? Evidence from China. J. Clean. Prod. 341, 130855 (2022).
Ungureanu, P., Cochis, C., Bertolotti, F., Mattarelli, E. & Scapolan, A. C. Multiplex boundary work in innovation projects: the role of collaborative spaces for cross-functional and open innovation. Eur. J. Innov. Manage. 24, 984–1010 (2020).
Xu, J., Qiu, B., Zhang, F. & Zhang, J. Restorative effects of pocket parks on mental fatigue among young adults: A comparative experimental study of three park types. Forests 15, 286 (2024).
Sallis, J. F., Johnson, M. F., Calfas, K. J., Caparosa, S. & Nichols, J. F. Assessing perceived physical environmental variables that May influence physical activity. Res. Q. Exerc. Sport. https://doi.org/10.1080/02701367.1997.10608015 (1997). https://www.tandfonline.com/doi/abs/
Ewing, R. H. et al. Measuring Urban Design: Metrics for Livable Places Vol. 200 (Island, 2013).
B., M. A. The uses of big data in cities. Big Data. https://doi.org/10.1089/big.2013.0042 (2014). doi:10.1089/big.2013.0042.
Caruelle, D., Gustafsson, A., Shams, P. & Lervik-Olsen, L. The use of electrodermal activity (EDA) measurement to understand consumer emotions–a literature review and a call for action. J. Bus. Res. 104, 146–160 (2019).
Kim, M., Cheon, S. & Kang, Y. Use of electroencephalography (EEG) for the analysis of emotional perception and fear to nightscapes. Sustainability 11, 233 (2019).
Reece, R., Bornioli, A., Bray, I. & Alford, C. Exposure to green and historic urban environments and mental well-being: results from EEG and psychometric outcome measures. Int. J. Environ. Res. Public Health. 19, 13052 (2022).
Liang, H., Zhang, J., Li, Y., Zhu, Z. & Wang, B. Automatic estimation for visual quality changes of street space via street-view images and multimodal large language models. (2023). https://www.preprints.org/frontend/manuscript/1c3c24d0ed8f219c5cfacb49b1c49c12/download_pub
Malekzadeh, M., Willberg, E., Torkko, J. & Toivonen, T. Urban attractiveness according to chatgpt: contrasting AI and human insights. Comput. Environ. Urban Syst. 117, 102243 (2025).
Blečić, I., Saiu, V. & Trunfio, A. Enhancing urban walkability assessment with multimodal large Language models. In Computational Science and its Applications – ICCSA 2024 Workshops (eds Gervasi, O. et al.) 394–411 (Springer Nature Switzerland, 2024). https://doi.org/10.1007/978-3-031-65282-0_26.
Ki, D., Lee, H., Park, K., Ha, J. & Lee, S. Measuring nuanced walkability: leveraging chatgpt’s vision reasoning with multisource Spatial data. Comput. Environ. Urban Syst. 121, 102319 (2025).
Melnychenko, A., Shevchuk, N., Babiy, I., Blyznyuk, T. & Akimova, O. Transformation of industrial parks in the direction of providing of the purposes achievement of sustainable development. Int. J. Comput. Sci. Netw. Secur. 22, 7–14 (2022).
Phan, P. H., Siegel, D. S. & Wright, M. Science parks and incubators: Observations, synthesis and future research. J. Bus. Ventur. 20, 165–182 (2005).
Côté, R. P. & Cohen-Rosenthal, E. Designing eco-industrial parks: A synthesis of some experiences. J. Clean. Prod. 6, 181–188 (1998).
Katz, B. & Wagner, J. The rise of urban innovation districts. Harv Bus. Rev 12. https://hbr.org/2014/11/the-rise-of-urban-innovation-districts (2014).
Amabile, T. M., Barsade, S. G., Mueller, J. S. & Staw, B. M. Affect and creativity at work. Adm. Sci. Q. 50, 367–403 (2005).
Florida, R. Cities and the Creative Class (Routledge, 2005).
Glaeser, E. L. & Resseger, M. G. The complementarity between cities and skills. J. Reg. Sci. 50, 221–244 (2010).
Wang, J., Tong, C. & Hu, X. Policy zoning method for innovation districts to sustainably develop the knowledge-economy: A case study in hangzhou, China. Sustainability 13, 3503 (2021).
Bloom, N., Van Reenen, J. & Williams, H. A toolkit of policies to promote innovation. J. Economic Perspect. 33, 163–184 (2019).
Maennig, W. & Ölschläger, M. Innovative milieux and regional competitiveness: the role of associations and chambers of commerce and industry in Germany. Reg. Stud. 45, 441–452 (2011).
Kim, Y. A. & Hipp, J. R. Density, diversity, and design: three measures of the built environment and the Spatial patterns of crime in street segments. J. Criminal Justice. 77, 101864 (2021).
Wang, X., Zhang, Y., Yu, D., Qi, J. & Li, S. Investigating the Spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in beijing, China. Land. Use Policy. 119, 106162 (2022).
Dabrowska, J. Measuring the success of science parks: Performance monitoring and evaluation. (2011). https://repositorio.minciencias.gov.co/bitstream/handle/20.500.14143/265/1622-DABROWSKA_2011_MEASURING_TH.PDF?sequence=1
Bigliardi, B., Dormio, A. I., Nosella, A. & Petroni, G. Assessing science parks’ performances: directions from selected Italian case studies. Technovation 26, 489–505 (2006).
Lu, J. et al. IOP Publishing,. Evaluation on synergetic innovation ability of environmental protection industrial park. in IOP Conference Series: Earth and Environmental Science vol. 598 012079 (2020).
Anderson, N. R. & West, M. A. Measuring climate for work group innovation: development and validation of the team climate inventory. J. Organiz Behav. 19, 235–258 (1998).
Rui, J., Xu, Y., Cai, C. & Li, X. Leveraging large Language models for tourism research based on 5D framework: A collaborative analysis of tourist sentiments and Spatial features. Tour. Manag. 108, 105115 (2025).
Liang, J. et al. GSV2SVF-an interactive GIS tool for sky, tree and Building view factor Estimation from street view photographs. Build. Environ. 168, 106475 (2020).
Zhang, L. et al. Quantifying the urban visual perception of Chinese traditional-style Building with street view images. Appl. Sci. 10, 5963 (2020).
He, N. & Li, G. Urban neighbourhood environment assessment based on street view image processing: A review of research trends. Environ. Challenges. 4, 100090 (2021).
Kostikova, A. et al. LLLMs: A data-driven survey of evolving research on limitations of large Language models. Preprint at. https://doi.org/10.48550/arXiv.2505.19240 (2025).
Hadi, M. U. et al. A survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Preprints (2023). https://www.authorea.com/doi/full/10.36227/techrxiv.23589741.v3?commit=257b583a651fe9d363a4bce30dd48b38eb5a2bea
Liu, Y. et al. Sora: A review on background, technology, limitations, and opportunities of large vision models. Preprint at. https://doi.org/10.48550/arXiv.2402.17177 (2024).
Wu, J. et al. Reinforcing Spatial reasoning in vision-language models with interwoven thinking and visual drawing. Preprint at. https://doi.org/10.48550/arXiv.2506.09965 (2025).
Belaroussi, R. Subjective assessment of a built environment by ChatGPT, gemini and grok: comparison with architecture, engineering and construction expert perception. Big Data Cogn. Comput. 9, 100 (2025).
Li, L., Ye, Y., Jiang, B., Zeng, W. & Georeasoner Geo-localization with reasoning in street views using a large vision-language model. in Forty-first International Conference on Machine Learning (2024).
Zhang, J., Li, Y., Fukuda, T. & Wang, B. Urban safety perception assessments via integrating multimodal large Language models with street view images. Cities 165, 106122 (2025).
Shang, Y. et al. UrbanWorld: an urban world model for 3D City generation. Preprint at. https://doi.org/10.48550/arXiv.2407.11965 (2024).
Zhang, D., Xiong, Z. & Zhu, X. Evaluation of thermal comfort in urban commercial space with vision–language-model-based agent model. Land 14, 786 (2025).
Falotico, R. & Quatto, P. Fleiss’ kappa statistic without paradoxes. Qual. Quant. 49, 463–470 (2015).
Ulrich, R. S. Stress reduction theory. D. Marchand, E. Pol, & K. Weiss (Eds.) 100, 143–146 (2023).
Basu, A., Duvall, J. & Kaplan, R. Attention restoration theory: exploring the role of soft fascination and mental bandwidth. Environ. Behav. 51, 1055–1081 (2019).
Pham, T. P. & Sanocki, T. Human attention restoration, flow, and creativity: A conceptual integration. J. Imaging. 10, 83 (2024).
Kothencz, G. & Blaschke, T. Urban parks: visitors’ perceptions versus Spatial indicators. Land. Use Policy. 64, 233–244 (2017).
Dean, J. T. Noise, cognitive function, and worker productivity. Am. Economic Journal: Appl. Econ. 16, 322–360 (2024).
Moultrie, J. et al. Innovation spaces: towards a framework for Understanding the role of the physical environment in innovation. Creativity Innov. Manage. 16, 53–65 (2007).
Wu, K., Wang, Y., Zhang, H., Liu, Y. & Ye, Y. Impact of the built environment on the Spatial heterogeneity of regional innovation productivity: evidence from the Pearl river delta, China. Chin. Geogr. Sci. 31, 413–428 (2021).
Stokols, D., Clitheroe, C. & Zmuidzinas, M. Qualities of work environments that promote perceived support for creativity. Creativity Res. J. 14, 137–147 (2002).
Roe, D. Naturally artificial: the pre-raphaelite garden enclosed. Vic. Poetry. 57, 131–153 (2019).
Daniel, G. R. Safe spaces for enabling the creative process in classrooms. Australian J. Teacher Educ. (Online). 45, 41–57 (2020).
Caivano, J. L. Research on color in architecture and environmental design: brief history, current developments, and possible future. Color. Res. Application. 31, 350–363 (2006).
Azudin, N., Ismail, M. N. & Taherali, Z. Knowledge sharing among workers: A study on their contribution through informal communication in cyberjaya, Malaysia. Knowl. Manage. E-Learning. 1, 139 (2009).
Yun, J. J., Zhao, X., Yigitcanlar, T., Lee, D. & Ahn, H. Architectural design and open innovation symbiosis: insights from research campuses, manufacturing systems, and innovation districts. Sustainability 10, 4495 (2018).
Moritz, E. The tapestry metaphor: Weaving meaning from threads. Experimenting with gemini Pro2. 5. (2025). https://www.researchgate.net/profile/Elan-Moritz/publication/390527921_The_Tapestry_Metaphor_Weaving_Meaning_from_Threads_Experimenting_with_Gemini_Pro25/links/67f1e276e8041142a16a2991/The-Tapestry-Metaphor-Weaving-Meaning-from-Threads-Experimenting-with-Gemini-Pro25.pdf
Comanici, G. et al. Gemini 2.5: pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. Preprint at. https://doi.org/10.48550/arXiv.2507.06261 (2025).
OpenAI et al. GPT-4o system card. Preprint at. https://doi.org/10.48550/arXiv.2410.21276 (2024).
Wang, Y. et al. AICrypto: A comprehensive benchmark for evaluating cryptography capabilities of large Language models. Preprint at. https://doi.org/10.48550/arXiv.2507.09580 (2025).
Qiu, Y. et al. Human-aligned bench: Fine-grained assessment of reasoning ability in MLLMs vs. Hum. Preprint at. https://doi.org/10.48550/arXiv.2505.11141 (2025).
Suzuki, K. Claude 3.5 sonnet indicated improved TNM classification on radiology report of pancreatic cancer. Jpn J. Radiol. 43, 56–57 (2025).
Caplan, R. D. & Van Harrison, R. Person-environment fit theory: some history, recent developments, and future directions. J. Soc. Issues. 49, 253–275 (1993).
Xu, L., Zhang, Y., Li, F. & Yin, J. Perceptual difference of urban public spaces between design professionals and ‘laypersons’: Evidence, health implications and ready-made urban design templates. Indoor Built Environ. https://doi.org/10.1177/1420326X221116318 (2022).
Neilson, B. N., Craig, C. M., Travis, A. T. & Klein, M. I. A review of the limitations of attention restoration theory and the importance of its future research for the improvement of well-being in urban living. Visions Sustain. https://doi.org/10.13135/2384-8677/3323 (2019).
Liu, Y., Zhang, J., Liu, C. & Yang, Y. A review of attention restoration theory: implications for designing restorative environments. Sustainability 16, 3639 (2024).
Maslow, A. & Lewis, K. J. Maslow’s hierarchy of needs. Salenger Incorporated. 14, 987–990 (1987).
Shafique, A. Hierarchy of user’s need for Spatial organisation in public open spaces. Eur. J. Archit. Urban Plann. 3, 1–8 (2024).
Friedkin, N. A test of structural features of granovetter’s strength of weak ties theory. Social Networks. 2, 411–422 (1980).
Markoç, İ. Twitter in the context of oldenburg’s third place theory. IBAD 79–89. https://doi.org/10.21733/ibad.610335 (2019).